Abstract

We propose a systematic method of producing isotropic, double-negative metamaterials which operate in the visible spectrum. The material comprises two sets of inclusions dispersed in a host medium. We demonstrate that if the inclusions in one set are much smaller than those in the other, then the larger will behave as though they are submerged in a composite background material, rather than the true host material. This hierarchy effect is shown to enrich the designer’s capacity to induce strong, simultaneous electric and magnetic resonance at an arbitrary visible frequency, leading to double-negative behaviour. The predictions of Mie theory are verified using full-wave analysis and backward waves directly measured in the proposed designs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Double-negative metamaterial from conducting spheres with a high-permittivity shell

Scott Townsend, Shiwei Zhou, and Qing Li
Opt. Lett. 39(15) 4587-4590 (2014)

Design of fiber metamaterials with negative refractive index in the infrared

Scott Townsend, Shiwei Zhou, and Qing Li
Opt. Express 23(14) 18236-18242 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
    [Crossref] [PubMed]
  2. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).
    [Crossref] [PubMed]
  3. Y. Lai, H. Chen, Z.-Q. Zhang, and C. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
    [Crossref] [PubMed]
  4. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express 14, 9344–9349 (2006).
    [Crossref] [PubMed]
  5. G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536–11541 (2007).
    [Crossref] [PubMed]
  6. I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microw. Opt. Technol. Let. 48, 2553–2556 (2006).
    [Crossref]
  7. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73, 045105 (2006).
    [Crossref]
  8. D. Wu, S. Jiang, Y. Cheng, and X. Liu, “Three-layered metallodielectric nanoshells: plausible meta-atoms for metamaterials with isotropic negative refractive index at visible wavelengths,” Opt. Express 21, 1076–1086 (2013).
    [Crossref] [PubMed]
  9. S. Townsend, S. Zhou, and Q. Li, “Double-negative metamaterial from conducting spheres with a high-permittivity shell,” Opt. Lett. 39, 4587–4590 (2014).
    [Crossref] [PubMed]
  10. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
    [Crossref]
  11. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [Crossref] [PubMed]
  12. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
    [Crossref]
  13. G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005).
    [Crossref] [PubMed]
  14. A. Alu and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009).
    [Crossref] [PubMed]
  15. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
    [Crossref] [PubMed]
  16. S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
    [Crossref] [PubMed]
  17. L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” Appl. Phys. 99, 043102 (2006).
    [Crossref]
  18. V. Yannopapas, “Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres,” Phys. Rev. B 75, 035112 (2007).
    [Crossref]
  19. A. Sihvola and I. Lindell, “Polarizability modeling of heterogeneous media,” in Prog. Electromagn. Res. (PIER 6), Dielectric Properties of Heterogeneous Materials, A. Priou, (ed.) (Elsevier, 1992).
  20. E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance properties of optical all-dielectric metamaterials using two-dimensional multipole expansion,” Phys. Rev. B 86, 245108 (2012).
    [Crossref]
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 2008).
  22. X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
    [Crossref] [PubMed]
  23. K.-H. Su, Q.-H. Wei, X. Zhang, J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
    [Crossref]
  24. D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
    [Crossref]
  25. G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abeles, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
    [Crossref]
  26. D. Felbacq and G. Bouchitté, “Left-handed media and homogenization of photonic crystals,” Opt. Lett. 30, 1189–1191 (2005).
    [Crossref] [PubMed]
  27. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  28. A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285, 3412–3418 (2012).
    [Crossref]

2014 (1)

2013 (1)

2012 (3)

E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance properties of optical all-dielectric metamaterials using two-dimensional multipole expansion,” Phys. Rev. B 86, 245108 (2012).
[Crossref]

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[Crossref] [PubMed]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285, 3412–3418 (2012).
[Crossref]

2011 (2)

2010 (1)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

2009 (2)

Y. Lai, H. Chen, Z.-Q. Zhang, and C. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[Crossref] [PubMed]

A. Alu and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009).
[Crossref] [PubMed]

2007 (4)

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[Crossref] [PubMed]

V. Yannopapas, “Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres,” Phys. Rev. B 75, 035112 (2007).
[Crossref]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536–11541 (2007).
[Crossref] [PubMed]

2006 (4)

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microw. Opt. Technol. Let. 48, 2553–2556 (2006).
[Crossref]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73, 045105 (2006).
[Crossref]

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express 14, 9344–9349 (2006).
[Crossref] [PubMed]

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” Appl. Phys. 99, 043102 (2006).
[Crossref]

2005 (4)

2003 (1)

K.-H. Su, Q.-H. Wei, X. Zhang, J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

1993 (1)

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abeles, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Abeles, F.

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abeles, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Aitchison, J. S.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73, 045105 (2006).
[Crossref]

Aizpurua, J.

Alu, A.

Bilotti, F.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285, 3412–3418 (2012).
[Crossref]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 2008).

Bouchitté, G.

Bürgi, T.

Cai, B.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[Crossref] [PubMed]

Cai, W.

Chan, C.

Y. Lai, H. Chen, Z.-Q. Zhang, and C. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[Crossref] [PubMed]

Chantada, L.

Chen, H.

Y. Lai, H. Chen, Z.-Q. Zhang, and C. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[Crossref] [PubMed]

Chen, X.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[Crossref] [PubMed]

Cheng, Y.

Chettiar, U. K.

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Chremmos, I.

E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance properties of optical all-dielectric metamaterials using two-dimensional multipole expansion,” Phys. Rev. B 86, 245108 (2012).
[Crossref]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Dolling, G.

Drachev, V. P.

Engheta, N.

Enkrich, C.

Etrich, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[Crossref] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Felbacq, D.

Fisson, S.

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abeles, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Froufe-Pérez, L. S.

García-Etxarri, A.

Gómez-Medina, R.

Gu, M.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[Crossref] [PubMed]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 2008).

Jia, B.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[Crossref] [PubMed]

Jiang, S.

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Jylhä, L.

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” Appl. Phys. 99, 043102 (2006).
[Crossref]

Kallos, E.

E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance properties of optical all-dielectric metamaterials using two-dimensional multipole expansion,” Phys. Rev. B 86, 245108 (2012).
[Crossref]

Kildishev, A. V.

Kivshar, Y. S.

Kolmakov, I.

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” Appl. Phys. 99, 043102 (2006).
[Crossref]

Koschny, T.

D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Lai, Y.

Y. Lai, H. Chen, Z.-Q. Zhang, and C. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[Crossref] [PubMed]

Lederer, F.

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
[Crossref] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[Crossref] [PubMed]

Li, Q.

Lindell, I.

A. Sihvola and I. Lindell, “Polarizability modeling of heterogeneous media,” in Prog. Electromagn. Res. (PIER 6), Dielectric Properties of Heterogeneous Materials, A. Priou, (ed.) (Elsevier, 1992).

Linden, S.

Liu, X.

López, C.

Lukyanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Maslovski, S.

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” Appl. Phys. 99, 043102 (2006).
[Crossref]

Mock, J.

K.-H. Su, Q.-H. Wei, X. Zhang, J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Mojahedi, M.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73, 045105 (2006).
[Crossref]

Monti, A.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285, 3412–3418 (2012).
[Crossref]

Morrison, S. K.

Mühlig, S.

Nguyen Van, V.

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abeles, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Nieto-Vesperinas, M.

Odit, M.

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microw. Opt. Technol. Let. 48, 2553–2556 (2006).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

Pertsch, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[Crossref] [PubMed]

Qiao, Q.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[Crossref] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Rivory, J.

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abeles, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Rockstuhl, C.

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
[Crossref] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[Crossref] [PubMed]

Sáenz, J.

Saha, J. K.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[Crossref] [PubMed]

Sarychev, A. K.

Scharf, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[Crossref] [PubMed]

Scheffold, F.

Schultz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Shadrivov, I. V.

Shalaev, V. M.

Shalkevich, N.

Shi, Z.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[Crossref] [PubMed]

Sihvola, A.

A. Sihvola and I. Lindell, “Polarizability modeling of heterogeneous media,” in Prog. Electromagn. Res. (PIER 6), Dielectric Properties of Heterogeneous Materials, A. Priou, (ed.) (Elsevier, 1992).

Smith, D.

D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Smith, D. R.

K.-H. Su, Q.-H. Wei, X. Zhang, J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Soukoulis, C.

G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536–11541 (2007).
[Crossref] [PubMed]

D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Soukoulis, C. M.

Stokes, N.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[Crossref] [PubMed]

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Toscano, A.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285, 3412–3418 (2012).
[Crossref]

Townsend, S.

Tretyakov, S.

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” Appl. Phys. 99, 043102 (2006).
[Crossref]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Vegni, L.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285, 3412–3418 (2012).
[Crossref]

Vendik, I.

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microw. Opt. Technol. Let. 48, 2553–2556 (2006).
[Crossref]

Vendik, O.

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microw. Opt. Technol. Let. 48, 2553–2556 (2006).
[Crossref]

Vier, D.

D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Vuye, G.

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abeles, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Wang, Y.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[Crossref] [PubMed]

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abeles, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Wegener, M.

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Wheeler, M. S.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73, 045105 (2006).
[Crossref]

Wu, D.

Yannopapas, V.

E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance properties of optical all-dielectric metamaterials using two-dimensional multipole expansion,” Phys. Rev. B 86, 245108 (2012).
[Crossref]

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011).
[Crossref] [PubMed]

V. Yannopapas, “Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres,” Phys. Rev. B 75, 035112 (2007).
[Crossref]

Yuan, H.-K.

Zhang, X.

K.-H. Su, Q.-H. Wei, X. Zhang, J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Zhang, Z.-Q.

Y. Lai, H. Chen, Z.-Q. Zhang, and C. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[Crossref] [PubMed]

Zhou, J.

Zhou, S.

Appl. Phys. (1)

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” Appl. Phys. 99, 043102 (2006).
[Crossref]

Microw. Opt. Technol. Let. (1)

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microw. Opt. Technol. Let. 48, 2553–2556 (2006).
[Crossref]

Nano Lett. (2)

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[Crossref] [PubMed]

K.-H. Su, Q.-H. Wei, X. Zhang, J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Nature (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285, 3412–3418 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. B (5)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance properties of optical all-dielectric metamaterials using two-dimensional multipole expansion,” Phys. Rev. B 86, 245108 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73, 045105 (2006).
[Crossref]

V. Yannopapas, “Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres,” Phys. Rev. B 75, 035112 (2007).
[Crossref]

Phys. Rev. E (1)

D. Smith, D. Vier, T. Koschny, and C. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Phys. Rev. Lett. (3)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[Crossref] [PubMed]

Y. Lai, H. Chen, Z.-Q. Zhang, and C. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[Crossref] [PubMed]

Thin Solid Films (1)

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abeles, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 2008).

A. Sihvola and I. Lindell, “Polarizability modeling of heterogeneous media,” in Prog. Electromagn. Res. (PIER 6), Dielectric Properties of Heterogeneous Materials, A. Priou, (ed.) (Elsevier, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Composite comprised of two sets of inclusions with radii r1, r2 and permittivities ε1, ε2 dispersed in a host medium with permittivity εb. The volume fractions in both of the above are equivalent.
Fig. 2
Fig. 2 For sufficiently small r1/r2, the set of smaller inclusions and host material can be replaced by a homogenized composite background with permittivity εc.
Fig. 3
Fig. 3 Effective permittivity calculation for different values of r1/r2, verified via the S-parameter extraction method. In the above, εb = 2, ε1 = −1.6, ε2 = 10 and f1 = 0.15.
Fig. 4
Fig. 4 Silicon particles of radius 50nm are dispersed in a background medium with permittivity εc, which is varied. The volume fraction in all cases was set to 0.5.
Fig. 5
Fig. 5 The smaller inclusions are in fact dielectric particles such as Silica, coated with a noble metal such as Silver. This method provides a route to tunable ε′c < 0 behaviour at optical frequencies.
Fig. 6
Fig. 6 Effective permittivity, εc = ε′c + iε″c, of a dispersion of Silver-coated Silica particles, as per Eq. (4a). In each of the above, r0 = 5 nm, f1 = 0.15, εb = 2.
Fig. 7
Fig. 7 Full-wave analysis of composite, and the resulting reflection S11 and transmission S21 coefficients. Note that |Sij| and ∠Sij represent the magnitude and phase of Sij, respectively. In each, the larger (Si) inclusions have radius r2 = 54 nm, and the coating on the smaller particles is given by r0/r1 = 0.73. The unit cell models are shown on the left, and effective property values are given at 550 THz.
Fig. 8
Fig. 8 A backward wave is seen to propagate inside the proposed composite, evidenced by the change in sign of the phase gradient. In the above, the black dashed lines were measured in the composite shown; the red lines were measured in a homogeneous slab with ε = −0.97 + 0.04i, μ = −1.00 + 0.56i.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε ε b ε + ε b = 1 2 π { f 1 r 1 2 α 1 ( E ) + f 2 r 2 2 α 2 ( E ) }
α ( E ) = 8 i r 2 x 2 a 1
a 1 = [ D 1 ( m x ) / m + 1 / x ] J 1 ( x ) J 0 ( x ) [ D 1 ( m x ) / m + 1 / x ] H 1 ( 1 ) ( x ) H 0 ( 1 ) ( x )
ε c ε b ε c + ε b = r 1 r 2 1 2 π f 1 r 1 2 α 1 ( E )
ε ε c ε + ε c = r 1 r 2 1 2 π f 2 r 2 2 α 2 ( E )
μ 1 μ + 1 = r 1 r 2 1 2 π f 2 r 2 2 α 2 ( M )
α ( M ) = 4 i r 2 x 2 b 1
b 1 = [ m D 1 ( m x ) + 1 / x ] J 1 ( x ) J 0 ( x ) [ m D 1 ( m x ) + 1 / x ] H 1 ( 1 ) ( x ) H 0 ( 1 ) ( x )

Metrics