Abstract

We comprehensively investigate a degenerate vector phase-sensitive amplifier (PSA). We determine the gain dependence on the relative phase and polarization angle between the pumps and the degenerate signal wave. The vector PSA is experimentally shown to be sensitive to the pump states of polarization (SOP) due to polarization mode dispersion in the fiber. However, the scheme performance agrees well with theory under specific pump SOPs and we achieve an on-off gain over 10 dB with a small deviation from the theoretically expected results. In comparison to the scalar scheme, the proposed vector scheme has larger tolerance for pump depletion due to four-wave mixing between pumps and generation of higher-order idlers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quadrature demultiplexing using a degenerate vector parametric amplifier

Abel Lorences-Riesgo, Lan Liu, Samuel L. I. Olsson, Rohit Malik, Aleš Kumpera, Carl Lundström, Stojan Radic, Magnus Karlsson, and Peter A. Andrekson
Opt. Express 22(24) 29424-29434 (2014)

Phase regeneration for polarization-division multiplexed signals based on vector dual-pump nondegenerate phase sensitive amplification

Weili Yang, Yu Yu, Mengyuan Ye, Guanyu Chen, Chi Zhang, and Xinliang Zhang
Opt. Express 23(3) 2010-2020 (2015)

Pump-degenerate phase-sensitive amplification in chalcogenide waveguides

Yanbing Zhang, Jochen Schröder, Chad Husko, Simon Lefrancois, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton
J. Opt. Soc. Am. B 31(4) 780-787 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
    [Crossref]
  2. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express 14, 2085–2094 (2006).
    [Crossref] [PubMed]
  3. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, and L. Grüner-Nielsen, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
    [Crossref]
  4. J. A. Levenson, I. Abram, T. Rivera, and P. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B 10, 2233–2238 (1993).
    [Crossref]
  5. K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Richardson, “Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 17, 20393–20400 (2009).
    [Crossref] [PubMed]
  6. T. Umeki, O. Tadanaga, A. Takada, and M. Asobe, “Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides,” Opt. Express 19, 6326–6332 (2011).
    [Crossref] [PubMed]
  7. Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
    [Crossref]
  8. C. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004).
    [Crossref] [PubMed]
  9. C. McKinstrie, M. Raymer, S. Radic, and M. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257, 146–163 (2006).
    [Crossref]
  10. C. J. McKinstrie, S. Radic, M. G. Raymer, and L. Schenato, “Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency,” Opt. Express 15, 2178–2189 (2007).
    [Crossref] [PubMed]
  11. M. E. Marhic, “Polarization independence and phase-sensitive parametric amplification,” J. Opt. Soc. Am. B 28, 2685–2689 (2011).
    [Crossref]
  12. R. Jopson and R. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29, 2216–2217 (1993).
    [Crossref]
  13. K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12, 1916–1920 (1994).
    [Crossref]
  14. K.-Y. Wong, M. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
    [Crossref]
  15. S. Radic and C. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9, 7–23 (2003).
    [Crossref]
  16. A. Lorences Riesgo, C. Lundström, M. Karlsson, and P. Andrekson, “Demonstration of degenerate vector phase-sensitive amplification,” in “39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.3,” (2013).
  17. G. Agrawal, Nonlinear Fiber Optics, Optics and Photonics (Elsevier Science, 2013), 5th ed.
  18. C. J. McKinstrie and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express 14, 9600–9610 (2006).
    [Crossref] [PubMed]
  19. F. Yaman, Q. Lin, and G. Agrawal, “Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 431–433 (2004).
    [Crossref]
  20. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
    [Crossref]
  21. J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010).
    [Crossref] [PubMed]
  22. M. Gao, T. Inoue, T. Kurosu, and S. Namiki, “Evolution of the gain extinction ratio in dual-pump phase sensitive amplification,” Opt. Lett. 37, 1439–1441 (2012).
    [Crossref] [PubMed]

2013 (1)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

2012 (1)

2011 (3)

T. Umeki, O. Tadanaga, A. Takada, and M. Asobe, “Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides,” Opt. Express 19, 6326–6332 (2011).
[Crossref] [PubMed]

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
[Crossref]

M. E. Marhic, “Polarization independence and phase-sensitive parametric amplification,” J. Opt. Soc. Am. B 28, 2685–2689 (2011).
[Crossref]

2010 (2)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, and L. Grüner-Nielsen, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (1)

2006 (3)

2004 (2)

C. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004).
[Crossref] [PubMed]

F. Yaman, Q. Lin, and G. Agrawal, “Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 431–433 (2004).
[Crossref]

2003 (1)

S. Radic and C. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9, 7–23 (2003).
[Crossref]

2002 (1)

K.-Y. Wong, M. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
[Crossref]

1994 (1)

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12, 1916–1920 (1994).
[Crossref]

1993 (2)

R. Jopson and R. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29, 2216–2217 (1993).
[Crossref]

J. A. Levenson, I. Abram, T. Rivera, and P. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B 10, 2233–2238 (1993).
[Crossref]

1982 (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
[Crossref]

Abram, I.

Agrawal, G.

F. Yaman, Q. Lin, and G. Agrawal, “Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 431–433 (2004).
[Crossref]

G. Agrawal, Nonlinear Fiber Optics, Optics and Photonics (Elsevier Science, 2013), 5th ed.

Andrekson, P.

A. Lorences Riesgo, C. Lundström, M. Karlsson, and P. Andrekson, “Demonstration of degenerate vector phase-sensitive amplification,” in “39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.3,” (2013).

Andrekson, P. A.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, and L. Grüner-Nielsen, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010).
[Crossref] [PubMed]

Asobe, M.

Blessing, D. J.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
[Crossref]

Caves, C. M.

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
[Crossref]

Chandrasekhar, S.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

Chraplyvy, A. R.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

Croussore, K.

Ellis, A. D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, and L. Grüner-Nielsen, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Gallo, K.

Gao, M.

Grangier, P.

Grüner-Nielsen, L.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, and L. Grüner-Nielsen, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Han, Y.

Inoue, K.

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12, 1916–1920 (1994).
[Crossref]

Inoue, T.

Jopson, R.

R. Jopson and R. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29, 2216–2217 (1993).
[Crossref]

Kakande, J.

Karlsson, M.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
[Crossref]

J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010).
[Crossref] [PubMed]

A. Lorences Riesgo, C. Lundström, M. Karlsson, and P. Andrekson, “Demonstration of degenerate vector phase-sensitive amplification,” in “39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.3,” (2013).

Kazovsky, L. G.

K.-Y. Wong, M. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
[Crossref]

Kim, C.

Kim, I.

Kurosu, T.

Lee, K. J.

Levenson, J. A.

Li, G.

Lin, Q.

F. Yaman, Q. Lin, and G. Agrawal, “Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 431–433 (2004).
[Crossref]

Liu, S.

Liu, X.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

Lorences Riesgo, A.

A. Lorences Riesgo, C. Lundström, M. Karlsson, and P. Andrekson, “Demonstration of degenerate vector phase-sensitive amplification,” in “39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.3,” (2013).

Lundström, C.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, and L. Grüner-Nielsen, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010).
[Crossref] [PubMed]

A. Lorences Riesgo, C. Lundström, M. Karlsson, and P. Andrekson, “Demonstration of degenerate vector phase-sensitive amplification,” in “39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.3,” (2013).

Marhic, M.

K.-Y. Wong, M. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
[Crossref]

Marhic, M. E.

McKinstrie, C.

C. McKinstrie, M. Raymer, S. Radic, and M. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257, 146–163 (2006).
[Crossref]

C. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004).
[Crossref] [PubMed]

S. Radic and C. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9, 7–23 (2003).
[Crossref]

McKinstrie, C. J.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
[Crossref]

C. J. McKinstrie, S. Radic, M. G. Raymer, and L. Schenato, “Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency,” Opt. Express 15, 2178–2189 (2007).
[Crossref] [PubMed]

C. J. McKinstrie and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express 14, 9600–9610 (2006).
[Crossref] [PubMed]

Namiki, S.

Parmigiani, F.

Petropoulos, P.

Puttnam, B. J.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
[Crossref]

Radic, S.

C. J. McKinstrie, S. Radic, M. G. Raymer, and L. Schenato, “Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency,” Opt. Express 15, 2178–2189 (2007).
[Crossref] [PubMed]

C. McKinstrie, M. Raymer, S. Radic, and M. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257, 146–163 (2006).
[Crossref]

C. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004).
[Crossref] [PubMed]

S. Radic and C. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9, 7–23 (2003).
[Crossref]

Raymer, M.

C. McKinstrie, M. Raymer, S. Radic, and M. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257, 146–163 (2006).
[Crossref]

Raymer, M. G.

Richardson, D.

Richardson, D. J.

Rivera, T.

Schenato, L.

Sjödin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, and L. Grüner-Nielsen, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Slavík, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, and L. Grüner-Nielsen, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Sygletos, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, and L. Grüner-Nielsen, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Tadanaga, O.

Takada, A.

Tench, R.

R. Jopson and R. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29, 2216–2217 (1993).
[Crossref]

Tipsuwannakul, E.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
[Crossref]

Tkach, R. W.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

Toda, H.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
[Crossref]

Tong, Z.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
[Crossref]

J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010).
[Crossref] [PubMed]

Uesaka, K.

K.-Y. Wong, M. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
[Crossref]

Umeki, T.

Vasilyev, M.

C. McKinstrie, M. Raymer, S. Radic, and M. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257, 146–163 (2006).
[Crossref]

Weerasuriya, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, and L. Grüner-Nielsen, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Winzer, P. J.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

Wong, K.-Y.

K.-Y. Wong, M. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
[Crossref]

Yaman, F.

F. Yaman, Q. Lin, and G. Agrawal, “Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 431–433 (2004).
[Crossref]

Electron. Lett. (1)

R. Jopson and R. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29, 2216–2217 (1993).
[Crossref]

IEEE Photon. Technol. Lett. (2)

K.-Y. Wong, M. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
[Crossref]

F. Yaman, Q. Lin, and G. Agrawal, “Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 431–433 (2004).
[Crossref]

J. Lightwave Technol. (1)

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12, 1916–1920 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (3)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, and L. Grüner-Nielsen, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010).
[Crossref]

Opt. Commun. (1)

C. McKinstrie, M. Raymer, S. Radic, and M. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257, 146–163 (2006).
[Crossref]

Opt. Express (7)

C. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004).
[Crossref] [PubMed]

K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express 14, 2085–2094 (2006).
[Crossref] [PubMed]

C. J. McKinstrie and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express 14, 9600–9610 (2006).
[Crossref] [PubMed]

C. J. McKinstrie, S. Radic, M. G. Raymer, and L. Schenato, “Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency,” Opt. Express 15, 2178–2189 (2007).
[Crossref] [PubMed]

K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Richardson, “Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 17, 20393–20400 (2009).
[Crossref] [PubMed]

J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010).
[Crossref] [PubMed]

T. Umeki, O. Tadanaga, A. Takada, and M. Asobe, “Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides,” Opt. Express 19, 6326–6332 (2011).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

S. Radic and C. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9, 7–23 (2003).
[Crossref]

Opt. Lett. (1)

Phys. Rev. D (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
[Crossref]

Other (2)

A. Lorences Riesgo, C. Lundström, M. Karlsson, and P. Andrekson, “Demonstration of degenerate vector phase-sensitive amplification,” in “39th European Conference and Exhibition on Optical Communication (ECOC 2013), paper We.3.A.3,” (2013).

G. Agrawal, Nonlinear Fiber Optics, Optics and Photonics (Elsevier Science, 2013), 5th ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a): Polarization diagram for the degenerate vector PSA. (b): Polarization diagram for the degenerate scalar PSA. P1 pump at lowest frequency, P2 pump at highest frequency; S, signal; I, idler. Note that any axis polarization rotation can be applied over both diagrams schemes without losing validity as long as the indicated orthogonality relation between the signal, idler and pump polarizations are maintained. In other words, the pump, signal and idler are do not need to be linearly polarized.
Fig. 2
Fig. 2 Diagram of the degenerate vector PSA on the Poincaré sphere. S1, S2 and S3 correspond to the Stokes axis. P1, P2 indicates the pump polarizations. S/I shows the polarization of the degenerate wave formed by the signal and idler.
Fig. 3
Fig. 3 Experimental setup. Pumps (P1 and P2), signal (S) and idler (I) are defined for the PSA. LD, laser diode; EDFA, erbium-doped fiber amplifier; PC, polarization controller, PM, phase modulator; HNLF, highly-nonlinear fiber; PIA, phase-insensitive amplifier; OBPF, optical band-pass filter; VOA, variable optical attenuator; PZT, piezoelectric transducer; PSA, phase-sensitive amplifier; PLL, phase-locked loop.
Fig. 4
Fig. 4 On-off gain vs. signal azimuth, Ψ, for four different SOPs of the pumps. The legend indicates the Stokes parameters of P1 with P2 being orthogonal to P1. The polarization angle between the degenerate wave and the pumps, α, is about 90° in all cases.
Fig. 5
Fig. 5 Measured output spectra for the vector (α = 90°) and scalar (α = 0°) cases with maximum signal amplification using HNLF2. The vector spectrum was shifted 3 nm for clarity.
Fig. 6
Fig. 6 On-off gain vs. polarization angle, α, using HNLF2 for the vector (blue) and scalar (red) schemes with the polarization angle defined in Stokes space. The solid lines represent the theoretical curves, dotted line represent simulation results and the symbols represent measured data.
Fig. 7
Fig. 7 Degenerate wave power swing (maximum gain/maximum attenuation) vs. polarization angle, α using HNLF2 for the vector (blue) and scalar (red) schemes with the polarization angle defined in Stokes space. The solid lines represent the theoretical curves, dotted line represent simulation results and the symbols represent measured data.
Fig. 8
Fig. 8 Measured output spectra for the vector (α = 90°) and scalar (α = 0°) cases with maximum signal amplification using HNLF3. The vector spectrum was shifted 3 nm for clarity.
Fig. 9
Fig. 9 On-Off gain vs. polarization angle, α, using HNLF3 for the vector (blue) and scalar (red) schemes with the polarization angle defined in Stokes space. The solid lines represent the theoretical curves, dotted line represent simulation results and the symbols represent measured data.
Fig. 10
Fig. 10 Degenerate wave power swing (maximum gain/maximum attenuation) vs. polarization angle, α, using HNLF3 for the vector (blue) and scalar (red) schemes with the polarization angle defined in Stokes space. The solid lines represent the theoretical curves, dotted line represent simulation results and the symbols represent measured data.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S out = μ V S in + ν V I in *
I out = μ V I in + ν V S in * ,
G V = | μ V | 2 + | ν V | 2 + 2 | μ V | | ν V | sin ( α ) cos ( ϕ ) ,
S out = μ S S in + ν S S in * ,
G S = ( | μ S | 2 + | ν S | 2 + 2 | μ S | | ν S | cos ( ϕ ) ) cos 2 ( α / 2 ) + sin 2 ( α / 2 ) ,

Metrics