Abstract

By using diode-end-pumped acousto-optically Q-switched intracavity Raman laser configurations, we demonstrate a four-wavelength laser emitting at 1047.0, 1053.0, 1159.4 and 1166.8 nm. Two Nd:YLiF4 crystals are employed to generate 1047.0-nm and 1053.0-nm laser radiations. These two lasers are then frequency converted by a BaWO4 Raman crystal to generate 1159.4-nm and 1166.8-nm first-Stokes waves. With pulse synchronization realized, we obtain the maximum output powers of 427, 418, 423 and 332 mW for 1047.0-nm, 1053.0-nm, 1159.4-nm and 1166.8-nm lasers, respectively. The total optical-to-optical conversion efficiency is 15.1%.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient diode-pumped actively Q-switched Nd:YAG?BaWO4 intracavity Raman laser

Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang
Opt. Lett. 30(24) 3335-3337 (2005)

Dual-polarization balanced Yb:GAB crystal for an intracavity simultaneous orthogonally polarized multi-wavelength KGW Raman laser

Yijian Sun, Chaokuei Lee, Zhaojie Zhu, Yeqing Wang, Houping Xia, Xihu Wang, Jinlong Xu, Zhenyu You, and Chaoyang Tu
Opt. Mater. Express 6(11) 3550-3557 (2016)

Diode-pumped actively Q-switched Tm:YAP/BaWO4 intracavity Raman laser

Jiaqun Zhao, Ying Li, Su Zhang, Li Li, and Xinlu Zhang
Opt. Express 23(8) 10075-10080 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
    [Crossref]
  2. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
    [Crossref]
  3. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [Crossref]
  4. R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009).
    [Crossref] [PubMed]
  5. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35(17), 2994–2996 (2010).
    [Crossref] [PubMed]
  6. J. P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011).
    [Crossref] [PubMed]
  7. M. Murtagh, J. Lin, R. P. Mildren, and D. J. Spence, “Ti:sapphire-pumped diamond Raman laser with sub-100-fs pulse duration,” Opt. Lett. 39(10), 2975–2978 (2014).
    [Crossref] [PubMed]
  8. J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, and R. A. Stolzenberger, “Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals,” Opt. Lett. 20(9), 1017–1019 (1995).
    [Crossref] [PubMed]
  9. N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74(6), 521–527 (2002).
    [Crossref]
  10. T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid IR (1.5–2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Phys. Lett. 2(5), 237–238 (2005).
    [Crossref]
  11. O. V. Kulagin, I. A. Gorbunov, A. M. Sergeev, and M. Valley, “Picosecond Raman compression laser at 1530 nm with aberration compensation,” Opt. Lett. 38(17), 3237–3240 (2013).
    [Crossref] [PubMed]
  12. P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron. 30(1), 55–59 (2000).
    [Crossref]
  13. Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, “Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser,” Opt. Lett. 30(24), 3335–3337 (2005).
    [Crossref] [PubMed]
  14. P. Černý, P. G. Zverev, H. Jelınkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystal,” Opt. Commun. 177(1), 397–404 (2000).
    [Crossref]
  15. Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum ‐ frequency generation of diode ‐ end ‐ pumped Nd: YAG/SrWO4 Raman laser,” Laser Phys. Lett. 7(7), 491–494 (2010).
    [Crossref]
  16. H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
    [Crossref]
  17. D. Geskus, J. Neto, S. M. Reijn, H. M. Pask, and N. U. Wetter, “Quasi-continuous wave Raman lasers at 990 and 976 nm based on a three-level Nd:YLF laser,” Opt. Lett. 39(10), 2982–2985 (2014).
    [Crossref] [PubMed]
  18. Y. T. Chang, H. L. Chang, K. W. Su, and Y. F. Chen, “High-efficiency Q-switched dual-wavelength emission at 1176 and 559 nm with intracavity Raman and sum-frequency generation,” Opt. Express 17(14), 11892–11897 (2009).
    [Crossref] [PubMed]
  19. A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
    [Crossref] [PubMed]
  20. P. G. Zverev and L. I. Ivleva, “Eye-safe Nd:YVO4 laser with intracavity SRS in a BaWO4 crystal,” Quantum Electron. 42(1), 27–30 (2012).
    [Crossref]
  21. Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29(16), 1915–1917 (2004).
    [Crossref] [PubMed]
  22. H. Shen, Q. Wang, X. Zhang, Z. Liu, F. Bai, Z. Cong, X. Chen, Z. Wu, W. Wang, L. Gao, and W. Lan, “Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm,” Opt. Lett. 37(19), 4113–4115 (2012).
    [Crossref] [PubMed]
  23. G. Shayeganrad, “Actively Q-switched Nd:YVO4 dual-wavelength stimulated Raman laser at 1178.9 nm and 1199.9 nm,” Opt. Commun. 292, 131–134 (2013).
    [Crossref]
  24. H. Shen, Q. Wang, X. Zhang, L. Zhang, C. Zhang, X. Chen, Z. Cong, F. Bai, and Z. Liu, “Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm,” Appl. Phys. Express 6(4), 042704 (2013).
    [Crossref]
  25. S. Li, X. Zhang, Q. Wang, X. Zhang, Z. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007).
    [Crossref] [PubMed]
  26. A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express 16(26), 21958–21963 (2008).
    [Crossref] [PubMed]
  27. H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, H. Shen, Y. Zheng, L. Huang, and Z. Chen, “Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light,” Opt. Express 17(24), 21544–21550 (2009).
    [Crossref] [PubMed]
  28. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd ed. (Springer, 2003).
  29. S. M. Spuler and S. D. Mayor, “Raman shifter optimized for lidar at a 1.5 µm wavelength,” Appl. Opt. 46(15), 2990–2995 (2007).
    [Crossref] [PubMed]
  30. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35(23), 3979–3981 (2010).
    [Crossref] [PubMed]
  31. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
    [Crossref] [PubMed]
  32. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
    [Crossref]
  33. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Terahertz intracavity generation from output coupler consisting of stacked GaP plates,” Appl. Phys. Lett. 101(2), 021107 (2012).
    [Crossref]
  34. R. P. Mildren and J. A. Piper, “Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes,” Opt. Express 16(5), 3261–3272 (2008).
    [Crossref] [PubMed]
  35. Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
    [Crossref]
  36. E. O. Ammann, “Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate,” Appl. Phys. Lett. 34(12), 838 (1979).
    [Crossref]
  37. R. P. Mildren, H. M. Pask, H. Ogilvy, and J. A. Piper, “Discretely tunable, all-solid-state laser in the green, yellow, and red,” Opt. Lett. 30(12), 1500–1502 (2005).
    [Crossref] [PubMed]
  38. D. G. Lancaster and J. M. Dawes, “Methane detection with a narrow-band source at 3.4 µm based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing,” Appl. Opt. 35(21), 4041–4045 (1996).
    [Crossref] [PubMed]
  39. A. Ahlborn and U. Parlitz, “Stabilizing unstable steady states using Multiple Delay Feedback Control,” Phys. Rev. Lett. 93(26), 264101 (2004).
    [Crossref] [PubMed]

2014 (2)

2013 (4)

G. Shayeganrad, “Actively Q-switched Nd:YVO4 dual-wavelength stimulated Raman laser at 1178.9 nm and 1199.9 nm,” Opt. Commun. 292, 131–134 (2013).
[Crossref]

H. Shen, Q. Wang, X. Zhang, L. Zhang, C. Zhang, X. Chen, Z. Cong, F. Bai, and Z. Liu, “Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm,” Appl. Phys. Express 6(4), 042704 (2013).
[Crossref]

O. V. Kulagin, I. A. Gorbunov, A. M. Sergeev, and M. Valley, “Picosecond Raman compression laser at 1530 nm with aberration compensation,” Opt. Lett. 38(17), 3237–3240 (2013).
[Crossref] [PubMed]

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

2012 (3)

H. Shen, Q. Wang, X. Zhang, Z. Liu, F. Bai, Z. Cong, X. Chen, Z. Wu, W. Wang, L. Gao, and W. Lan, “Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm,” Opt. Lett. 37(19), 4113–4115 (2012).
[Crossref] [PubMed]

P. G. Zverev and L. I. Ivleva, “Eye-safe Nd:YVO4 laser with intracavity SRS in a BaWO4 crystal,” Quantum Electron. 42(1), 27–30 (2012).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Terahertz intracavity generation from output coupler consisting of stacked GaP plates,” Appl. Phys. Lett. 101(2), 021107 (2012).
[Crossref]

2011 (3)

2010 (4)

2009 (4)

2008 (2)

2007 (3)

2005 (3)

2004 (2)

A. Ahlborn and U. Parlitz, “Stabilizing unstable steady states using Multiple Delay Feedback Control,” Phys. Rev. Lett. 93(26), 264101 (2004).
[Crossref] [PubMed]

Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29(16), 1915–1917 (2004).
[Crossref] [PubMed]

2003 (1)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

2002 (1)

N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74(6), 521–527 (2002).
[Crossref]

2000 (3)

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron. 30(1), 55–59 (2000).
[Crossref]

P. Černý, P. G. Zverev, H. Jelınkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystal,” Opt. Commun. 177(1), 397–404 (2000).
[Crossref]

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

1996 (1)

1995 (1)

1979 (1)

E. O. Ammann, “Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate,” Appl. Phys. Lett. 34(12), 838 (1979).
[Crossref]

Ahlborn, A.

A. Ahlborn and U. Parlitz, “Stabilizing unstable steady states using Multiple Delay Feedback Control,” Phys. Rev. Lett. 93(26), 264101 (2004).
[Crossref] [PubMed]

Ammann, E. O.

E. O. Ammann, “Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate,” Appl. Phys. Lett. 34(12), 838 (1979).
[Crossref]

Annanenkov, A. N.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Austin, W.

Bai, F.

H. Shen, Q. Wang, X. Zhang, L. Zhang, C. Zhang, X. Chen, Z. Cong, F. Bai, and Z. Liu, “Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm,” Appl. Phys. Express 6(4), 042704 (2013).
[Crossref]

H. Shen, Q. Wang, X. Zhang, Z. Liu, F. Bai, Z. Cong, X. Chen, Z. Wu, W. Wang, L. Gao, and W. Lan, “Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm,” Opt. Lett. 37(19), 4113–4115 (2012).
[Crossref] [PubMed]

Barnes, J. C.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Basiev, T. T.

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid IR (1.5–2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Phys. Lett. 2(5), 237–238 (2005).
[Crossref]

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron. 30(1), 55–59 (2000).
[Crossref]

P. Černý, P. G. Zverev, H. Jelınkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystal,” Opt. Commun. 177(1), 397–404 (2000).
[Crossref]

Bohn, M. J.

Bonner, G. M.

Brasseur, J. K.

Burns, D.

Cerný, P.

P. Černý, P. G. Zverev, H. Jelınkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystal,” Opt. Commun. 177(1), 397–404 (2000).
[Crossref]

Chang, H. L.

Chang, J.

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Chang, Y. T.

Chen, X.

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

H. Shen, Q. Wang, X. Zhang, L. Zhang, C. Zhang, X. Chen, Z. Cong, F. Bai, and Z. Liu, “Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm,” Appl. Phys. Express 6(4), 042704 (2013).
[Crossref]

H. Shen, Q. Wang, X. Zhang, Z. Liu, F. Bai, Z. Cong, X. Chen, Z. Wu, W. Wang, L. Gao, and W. Lan, “Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm,” Opt. Lett. 37(19), 4113–4115 (2012).
[Crossref] [PubMed]

Chen, Y. F.

Chen, Z.

Chyba, T. H.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Cong, Z.

H. Shen, Q. Wang, X. Zhang, L. Zhang, C. Zhang, X. Chen, Z. Cong, F. Bai, and Z. Liu, “Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm,” Appl. Phys. Express 6(4), 042704 (2013).
[Crossref]

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

H. Shen, Q. Wang, X. Zhang, Z. Liu, F. Bai, Z. Cong, X. Chen, Z. Wu, W. Wang, L. Gao, and W. Lan, “Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm,” Opt. Lett. 37(19), 4113–4115 (2012).
[Crossref] [PubMed]

S. Li, X. Zhang, Q. Wang, X. Zhang, Z. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007).
[Crossref] [PubMed]

Dawes, J. M.

Dawson, M. D.

Dekker, P.

Ding, Y. J.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Terahertz intracavity generation from output coupler consisting of stacked GaP plates,” Appl. Phys. Lett. 101(2), 021107 (2012).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35(23), 3979–3981 (2010).
[Crossref] [PubMed]

Doroshenko, M. E.

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid IR (1.5–2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Phys. Lett. 2(5), 237–238 (2005).
[Crossref]

Duan, Y.

Duan, Y. M.

Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum ‐ frequency generation of diode ‐ end ‐ pumped Nd: YAG/SrWO4 Raman laser,” Laser Phys. Lett. 7(7), 491–494 (2010).
[Crossref]

Eichler, H. J.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Fan, S.

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Fang, J.

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

Feve, J. P. M.

Gad, G. M. A.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Galagan, B. I.

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid IR (1.5–2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Phys. Lett. 2(5), 237–238 (2005).
[Crossref]

Gao, L.

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

H. Shen, Q. Wang, X. Zhang, Z. Liu, F. Bai, Z. Cong, X. Chen, Z. Wu, W. Wang, L. Gao, and W. Lan, “Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm,” Opt. Lett. 37(19), 4113–4115 (2012).
[Crossref] [PubMed]

Geskus, D.

Gorbunov, I. A.

Hastie, J. E.

Huang, C.

Huang, C. H.

Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum ‐ frequency generation of diode ‐ end ‐ pumped Nd: YAG/SrWO4 Raman laser,” Laser Phys. Lett. 7(7), 491–494 (2010).
[Crossref]

Huang, L.

Ivleva, L. I.

P. G. Zverev and L. I. Ivleva, “Eye-safe Nd:YVO4 laser with intracavity SRS in a BaWO4 crystal,” Quantum Electron. 42(1), 27–30 (2012).
[Crossref]

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron. 30(1), 55–59 (2000).
[Crossref]

Jelinkova, H.

P. Černý, P. G. Zverev, H. Jelınkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystal,” Opt. Commun. 177(1), 397–404 (2000).
[Crossref]

Jiang, M. H.

Jin, G.

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Kannari, F.

N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74(6), 521–527 (2002).
[Crossref]

Kemp, A. J.

Kulagin, O. V.

Lan, W.

Lancaster, D. G.

Lee, A. J.

Lee, H. R.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Lee, S. W.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Legun, V. D.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Li, P.

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

Li, S.

Lin, J.

Liu, Z.

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

H. Shen, Q. Wang, X. Zhang, L. Zhang, C. Zhang, X. Chen, Z. Cong, F. Bai, and Z. Liu, “Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm,” Appl. Phys. Express 6(4), 042704 (2013).
[Crossref]

H. Shen, Q. Wang, X. Zhang, Z. Liu, F. Bai, Z. Cong, X. Chen, Z. Wu, W. Wang, L. Gao, and W. Lan, “Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm,” Opt. Lett. 37(19), 4113–4115 (2012).
[Crossref] [PubMed]

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Lubeigt, W.

Lv, G.

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

Marsh, W. D.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Mayor, S. D.

McCray, C. L.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Mildren, R. P.

Murray, J. T.

Murtagh, M.

Neto, J.

Ogilvy, H.

Osiko, V. V.

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid IR (1.5–2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Phys. Lett. 2(5), 237–238 (2005).
[Crossref]

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron. 30(1), 55–59 (2000).
[Crossref]

Parlitz, U.

A. Ahlborn and U. Parlitz, “Stabilizing unstable steady states using Multiple Delay Feedback Control,” Phys. Rev. Lett. 93(26), 264101 (2004).
[Crossref] [PubMed]

Pask, H. M.

Peyghambarian, N.

Piper, J. A.

Polozkov, N. M.

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron. 30(1), 55–59 (2000).
[Crossref]

Powell, R. C.

Ragam, S.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Terahertz intracavity generation from output coupler consisting of stacked GaP plates,” Appl. Phys. Lett. 101(2), 021107 (2012).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35(23), 3979–3981 (2010).
[Crossref] [PubMed]

Reijn, S. M.

Sabella, A.

Sergeev, A. M.

Shayeganrad, G.

G. Shayeganrad, “Actively Q-switched Nd:YVO4 dual-wavelength stimulated Raman laser at 1178.9 nm and 1199.9 nm,” Opt. Commun. 292, 131–134 (2013).
[Crossref]

Shen, H.

H. Shen, Q. Wang, X. Zhang, L. Zhang, C. Zhang, X. Chen, Z. Cong, F. Bai, and Z. Liu, “Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm,” Appl. Phys. Express 6(4), 042704 (2013).
[Crossref]

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

H. Shen, Q. Wang, X. Zhang, Z. Liu, F. Bai, Z. Cong, X. Chen, Z. Wu, W. Wang, L. Gao, and W. Lan, “Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm,” Opt. Lett. 37(19), 4113–4115 (2012).
[Crossref] [PubMed]

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, H. Shen, Y. Zheng, L. Huang, and Z. Chen, “Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light,” Opt. Express 17(24), 21544–21550 (2009).
[Crossref] [PubMed]

Shortoff, K. E.

Skornyakov, V. V.

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron. 30(1), 55–59 (2000).
[Crossref]

Smith, D.

Sobol, A. A.

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron. 30(1), 55–59 (2000).
[Crossref]

Spence, D. J.

Spuler, S. M.

Stolzenberger, R. A.

Su, K. W.

Sun, W.

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Suzuki, S.

N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74(6), 521–527 (2002).
[Crossref]

Sverchkov, S. E.

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid IR (1.5–2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Phys. Lett. 2(5), 237–238 (2005).
[Crossref]

Takei, N.

N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74(6), 521–527 (2002).
[Crossref]

Tao, X.

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Temple, D. A.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Tu, C. Y.

Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum ‐ frequency generation of diode ‐ end ‐ pumped Nd: YAG/SrWO4 Raman laser,” Laser Phys. Lett. 7(7), 491–494 (2010).
[Crossref]

Ueda, K.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

Valley, M.

Wang, H.

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Wang, J.

Wang, J. Y.

Wang, Q.

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

H. Shen, Q. Wang, X. Zhang, L. Zhang, C. Zhang, X. Chen, Z. Cong, F. Bai, and Z. Liu, “Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm,” Appl. Phys. Express 6(4), 042704 (2013).
[Crossref]

H. Shen, Q. Wang, X. Zhang, Z. Liu, F. Bai, Z. Cong, X. Chen, Z. Wu, W. Wang, L. Gao, and W. Lan, “Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm,” Opt. Lett. 37(19), 4113–4115 (2012).
[Crossref] [PubMed]

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

S. Li, X. Zhang, Q. Wang, X. Zhang, Z. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007).
[Crossref] [PubMed]

Wang, W.

Wei, Y.

Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum ‐ frequency generation of diode ‐ end ‐ pumped Nd: YAG/SrWO4 Raman laser,” Laser Phys. Lett. 7(7), 491–494 (2010).
[Crossref]

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, H. Shen, Y. Zheng, L. Huang, and Z. Chen, “Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light,” Opt. Express 17(24), 21544–21550 (2009).
[Crossref] [PubMed]

Wetter, N. U.

Wu, Z.

Yang, F. G.

Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum ‐ frequency generation of diode ‐ end ‐ pumped Nd: YAG/SrWO4 Raman laser,” Laser Phys. Lett. 7(7), 491–494 (2010).
[Crossref]

You, Z. Y.

Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum ‐ frequency generation of diode ‐ end ‐ pumped Nd: YAG/SrWO4 Raman laser,” Laser Phys. Lett. 7(7), 491–494 (2010).
[Crossref]

Zhang, C.

H. Shen, Q. Wang, X. Zhang, L. Zhang, C. Zhang, X. Chen, Z. Cong, F. Bai, and Z. Liu, “Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm,” Appl. Phys. Express 6(4), 042704 (2013).
[Crossref]

Zhang, G.

Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum ‐ frequency generation of diode ‐ end ‐ pumped Nd: YAG/SrWO4 Raman laser,” Laser Phys. Lett. 7(7), 491–494 (2010).
[Crossref]

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, H. Shen, Y. Zheng, L. Huang, and Z. Chen, “Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light,” Opt. Express 17(24), 21544–21550 (2009).
[Crossref] [PubMed]

Zhang, H.

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

S. Li, X. Zhang, Q. Wang, X. Zhang, Z. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007).
[Crossref] [PubMed]

Zhang, H. J.

Zhang, L.

H. Shen, Q. Wang, X. Zhang, L. Zhang, C. Zhang, X. Chen, Z. Cong, F. Bai, and Z. Liu, “Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm,” Appl. Phys. Express 6(4), 042704 (2013).
[Crossref]

Zhang, S.

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Zhang, X.

H. Shen, Q. Wang, X. Zhang, L. Zhang, C. Zhang, X. Chen, Z. Cong, F. Bai, and Z. Liu, “Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm,” Appl. Phys. Express 6(4), 042704 (2013).
[Crossref]

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

H. Shen, Q. Wang, X. Zhang, Z. Liu, F. Bai, Z. Cong, X. Chen, Z. Wu, W. Wang, L. Gao, and W. Lan, “Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm,” Opt. Lett. 37(19), 4113–4115 (2012).
[Crossref] [PubMed]

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

S. Li, X. Zhang, Q. Wang, X. Zhang, Z. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007).
[Crossref] [PubMed]

S. Li, X. Zhang, Q. Wang, X. Zhang, Z. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007).
[Crossref] [PubMed]

Zhao, P.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Terahertz intracavity generation from output coupler consisting of stacked GaP plates,” Appl. Phys. Lett. 101(2), 021107 (2012).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35(23), 3979–3981 (2010).
[Crossref] [PubMed]

Zheng, Y.

Zhu, H.

Zhu, H. Y.

Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum ‐ frequency generation of diode ‐ end ‐ pumped Nd: YAG/SrWO4 Raman laser,” Laser Phys. Lett. 7(7), 491–494 (2010).
[Crossref]

Zhu, Z. J.

Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum ‐ frequency generation of diode ‐ end ‐ pumped Nd: YAG/SrWO4 Raman laser,” Laser Phys. Lett. 7(7), 491–494 (2010).
[Crossref]

Zotova, I. B.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Terahertz intracavity generation from output coupler consisting of stacked GaP plates,” Appl. Phys. Lett. 101(2), 021107 (2012).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35(23), 3979–3981 (2010).
[Crossref] [PubMed]

Zverev, P. G.

P. G. Zverev and L. I. Ivleva, “Eye-safe Nd:YVO4 laser with intracavity SRS in a BaWO4 crystal,” Quantum Electron. 42(1), 27–30 (2012).
[Crossref]

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron. 30(1), 55–59 (2000).
[Crossref]

P. Černý, P. G. Zverev, H. Jelınkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystal,” Opt. Commun. 177(1), 397–404 (2000).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (2)

Z. Liu, Q. Wang, X. Zhang, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

N. Takei, S. Suzuki, and F. Kannari, “20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal,” Appl. Phys. B 74(6), 521–527 (2002).
[Crossref]

Appl. Phys. Express (1)

H. Shen, Q. Wang, X. Zhang, L. Zhang, C. Zhang, X. Chen, Z. Cong, F. Bai, and Z. Liu, “Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm,” Appl. Phys. Express 6(4), 042704 (2013).
[Crossref]

Appl. Phys. Lett. (3)

E. O. Ammann, “Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate,” Appl. Phys. Lett. 34(12), 838 (1979).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Terahertz intracavity generation from output coupler consisting of stacked GaP plates,” Appl. Phys. Lett. 101(2), 021107 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Laser Phys. Lett. (2)

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid IR (1.5–2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Phys. Lett. 2(5), 237–238 (2005).
[Crossref]

Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum ‐ frequency generation of diode ‐ end ‐ pumped Nd: YAG/SrWO4 Raman laser,” Laser Phys. Lett. 7(7), 491–494 (2010).
[Crossref]

Opt. Commun. (4)

H. Shen, Q. Wang, P. Li, G. Lv, X. Zhang, Z. Liu, X. Chen, Z. Cong, L. Gao, X. Tao, H. Zhang, and J. Fang, “Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1502 and 1527 nm,” Opt. Commun. 306, 165–169 (2013).
[Crossref]

P. Černý, P. G. Zverev, H. Jelınkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystal,” Opt. Commun. 177(1), 397–404 (2000).
[Crossref]

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1), 277–287 (2000).
[Crossref]

G. Shayeganrad, “Actively Q-switched Nd:YVO4 dual-wavelength stimulated Raman laser at 1178.9 nm and 1199.9 nm,” Opt. Commun. 292, 131–134 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (14)

A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
[Crossref] [PubMed]

D. Geskus, J. Neto, S. M. Reijn, H. M. Pask, and N. U. Wetter, “Quasi-continuous wave Raman lasers at 990 and 976 nm based on a three-level Nd:YLF laser,” Opt. Lett. 39(10), 2982–2985 (2014).
[Crossref] [PubMed]

M. Murtagh, J. Lin, R. P. Mildren, and D. J. Spence, “Ti:sapphire-pumped diamond Raman laser with sub-100-fs pulse duration,” Opt. Lett. 39(10), 2975–2978 (2014).
[Crossref] [PubMed]

J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, and R. A. Stolzenberger, “Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals,” Opt. Lett. 20(9), 1017–1019 (1995).
[Crossref] [PubMed]

Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, “Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser,” Opt. Lett. 30(24), 3335–3337 (2005).
[Crossref] [PubMed]

R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009).
[Crossref] [PubMed]

W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35(17), 2994–2996 (2010).
[Crossref] [PubMed]

O. V. Kulagin, I. A. Gorbunov, A. M. Sergeev, and M. Valley, “Picosecond Raman compression laser at 1530 nm with aberration compensation,” Opt. Lett. 38(17), 3237–3240 (2013).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35(23), 3979–3981 (2010).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

S. Li, X. Zhang, Q. Wang, X. Zhang, Z. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007).
[Crossref] [PubMed]

Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29(16), 1915–1917 (2004).
[Crossref] [PubMed]

H. Shen, Q. Wang, X. Zhang, Z. Liu, F. Bai, Z. Cong, X. Chen, Z. Wu, W. Wang, L. Gao, and W. Lan, “Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm,” Opt. Lett. 37(19), 4113–4115 (2012).
[Crossref] [PubMed]

R. P. Mildren, H. M. Pask, H. Ogilvy, and J. A. Piper, “Discretely tunable, all-solid-state laser in the green, yellow, and red,” Opt. Lett. 30(12), 1500–1502 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Ahlborn and U. Parlitz, “Stabilizing unstable steady states using Multiple Delay Feedback Control,” Phys. Rev. Lett. 93(26), 264101 (2004).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

Quantum Electron. (2)

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron. 30(1), 55–59 (2000).
[Crossref]

P. G. Zverev and L. I. Ivleva, “Eye-safe Nd:YVO4 laser with intracavity SRS in a BaWO4 crystal,” Quantum Electron. 42(1), 27–30 (2012).
[Crossref]

Other (1)

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd ed. (Springer, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for the four-wavelength laser. s, p depicted the polarization state; c depicted c-axis directions of crystals.
Fig. 2
Fig. 2 Optical spectra of the four-wavelength laser.
Fig. 3
Fig. 3 Oscilloscope traces with color grades shown (6 kHz, 4.85 W pump power for 1053-nm laser): (a) 1159.4 nm and 1166.8 nm; (b) 1047.0 nm and 1053.0 nm; (c) 1047.0 nm and 1159.4 nm; (d) 1053.0 nm and 1166.8 nm.
Fig. 4
Fig. 4 Output powers of the four laser lines versus the incident pumping power for 1053.0-nm laser.
Fig. 5
Fig. 5 Pulse durations of the four laser lines versus the incident pumping power for 1053.0-nm laser.
Fig. 6
Fig. 6 Optical spectra of the SFG lines.

Tables (1)

Tables Icon

Table1 Possible DFG and SFG wavelengths from the four-wavelength laser

Metrics