Abstract

The novelty of this paper is that it reports on the tuning of the spectral properties of Er3+-Tm3+ ions in tellurite glasses in the near-infrared region through the incorporation of silver or gold nanoparticles. These noble metal nanoparticles can improve the emission intensity and expand the bandwidth of the luminescence spectrum centered at 1535 nm, covering practically all the optical telecommunication bands (S, C + L and U), and extended up to 2010 nm wavelength under excitation by a 976 nm laser diode. Both effects are obtained by the combined emission of Er3+ and Tm3+ ions due to efficient energy transfer processes promoted by the presence of silver or gold nanoparticles for the (Er3+)4I11/2→(Tm3+)3H5, (Er3+)4I13/2→(Tm3+)3H4 and (Er3+)4I13/2→(Tm3+)3F4 transitions. The interactions between the electronic transitions of Er3+ and Tm3+ ions that provide a tunable emission are associated with the dynamic coupling mechanism described by the variations generated by the Hamiltonian HDC in either the oscillator strength or the local crystal field, i.e. the line shape changes in the near-infrared emission band. The Hamiltonian is expressed as eigenmodes associated with the density of the conduction electron generated by the different nanoparticles through its collective free oscillations at each resonance frequency of the nanoparticle and their geometric dependence. A complete description of photon-plasmon interactions of noble metal nanoparticles with the Er3+ and Tm3+ ions is provided.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized surface plasmon resonance interaction with Er3+-doped tellurite glass

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega
Opt. Express 18(24) 25321-25328 (2010)

Study of broadband near-infrared emission in Tm3+-Er3+ codoped TeO2-WO3-PbO glasses

R. Balda, J. Fernández, and J.M. Fernández-Navarro
Opt. Express 17(11) 8781-8788 (2009)

Selective sensitization of 480-nm blue upconversion by Tm3+–Er3+ energy transfer in tellurite glass

S. Tanabe, K. Suzuki, N. Soga, and T. Hanada
J. Opt. Soc. Am. B 11(5) 933-942 (1994)

References

  • View by:
  • |
  • |
  • |

  1. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University, 2000).
  2. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010).
    [Crossref]
  3. S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
    [Crossref]
  4. V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, F. A. Ferri, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Optical gain medium for plasmonic devices,” Proc. SPIE 8621, 86211J (2013).
    [Crossref]
  5. A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
    [Crossref]
  6. K. A. Varshneya, H. A. Richardson, M. Wightman, and L. D. Pye, Processing, Properties and Applications of Glass and Optical Materials (John Wiley, 2012).
  7. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [Crossref]
  8. G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).
  9. A. S. Oliveira, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, A. S. B. Sombra, and Y. Messaddeq, “Frequency up-conversion in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 72(7), 753–755 (1998).
    [Crossref]
  10. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
    [Crossref]
  11. R. A. H. El-Mallawany, Tellurite Glasses Handbook – Physical Properties and Data (CRC Press, 2001).
  12. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley, 2002).
  13. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (TM Marcel Dekker, 2001).
  14. S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
    [Crossref] [PubMed]
  15. S. F. Zhou, N. Jiang, B. Zhu, H. C. Yang, S. Ye, G. Lakshminarayana, J. H. Hao, and J. R. Qiu, “Multifunctional Bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
    [Crossref]
  16. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
    [Crossref] [PubMed]
  17. Y. Arai, T. Suzuki, Y. Ohishi, K. S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
    [Crossref]
  18. M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M=Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
    [Crossref]
  19. T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass,” Appl. Phys. Lett. 84(19), 3804–3806 (2004).
    [Crossref]
  20. S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
    [Crossref] [PubMed]
  21. S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
    [Crossref]
  22. K. Zhang, S. Zhou, Y. Zhuang, R. Yang, and J. Qiu, “Bandwidth broadening of near-infrared emission through nanocrystallization in Bi/Ni co-doped glass,” Opt. Express 20(8), 8675–8680 (2012).
    [Crossref] [PubMed]
  23. S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77(6), 818–820 (2000).
    [Crossref]
  24. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
    [Crossref] [PubMed]
  25. K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12(10), 2027–2032 (2004).
    [Crossref] [PubMed]
  26. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Desevedavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
    [Crossref]
  27. B. Zhou, L. Tao, Y. H. Tsang, W. Jin, and E. Y. Pun, “Superbroadband near-infrared emission and energy transfer in Pr3+-Er3+ codoped fluorotellurite glasses,” Opt. Express 20(11), 12205–12211 (2012).
    [Crossref] [PubMed]
  28. S. X. Shen, A. Jha, L. H. Huang, and P. Joshi, “980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30(12), 1437–1439 (2005).
    [Crossref] [PubMed]
  29. V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega., “Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
    [Crossref]
  30. M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19(13), 2045–2052 (2009).
    [Crossref]
  31. V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express 18(24), 25321–25328 (2010).
    [Crossref] [PubMed]
  32. S. P. A. Osorio, V. A. G. Rivera, L. A. O. Nunes, E. Marega, D. Manzani, and Y. Messaddeq, “Plasmonic coupling in Er3+:Au tellurite glass,” Plasmonics 7(1), 53–58 (2012).
    [Crossref]
  33. V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Efficient plasmonic coupling between Er3+:(Ag/Au) in tellurite glasses,” J. Non-Crys. Sol. 358, 399–405 (2012).
  34. V. A. G. Rivera, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Study of Er3+ fluorescence on tellurite glasses containing Ag nanoparticles,” J. Phys. Conf. Ser. 274, 012123 (2011).
    [Crossref]
  35. M. Reza Dousti, M. R. Sahar, R. J. Amjad, S. K. Ghoshal, A. Khorramnazari, A. Dordizadeh Basirabad, and A. Samavati, “Enhanced frequency upconversion in Er3+-doped sodium lead tellurite glass containing silver nanoparticles,” Eur. Phys. J. D 66(9), 237 (2012).
    [Crossref]
  36. R. P. Kassab Luciana, R. De Almeida, D. M. Da Silva, A. A. De Assumpção Thiago, and C. B. De Araújo, “Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures,” J. Appl. Phys. 105, 103505 (2009).
  37. . P. P. de Campos, L. R. P. Kassab, T. A. A. de Assumpção, D. S. da Silva, and C. B. de Araújo, “Infrared-to-visible upconversion emission in Er3+ doped TeO2-WO3-Bi2O3 glasses with silver nanoparticles,” J. Appl. Phys. 112(6), 063519 (2012).
  38. V. A. G. Rivera, F. A. Ferri, and E. Marega, Jr., Plasmonics - Principles and Applications (InTech, 2012), Chap. 11.
  39. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  40. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [Crossref]
  41. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
    [Crossref] [PubMed]
  42. A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, and S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23, 1789–1797 (2013).
  43. V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, F. A. Ferri, J. L. Ribeiro Sidney, L. A. O. Nunes, and E. Marega Jr, “Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass,” J. Non-Crys. Solids 378, 126–134 (2013).
  44. A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, “Formation mechanism of silver nanoparticles stabilized in glassy matrices,” J. Am. Chem. Soc. 134(45), 18824–18833 (2012).
    [Crossref] [PubMed]
  45. V. A. G. Rivera, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Growth of silver nano-particle embedded in tellurite glass: Interaction between localized surface plasmon resonance and Er3+ ions,” Opt. Mater. 33(6), 888–892 (2011).
    [Crossref]
  46. V. A. G. Rivera, Ion Exchange Technology I, (Springer, 2012), Chap. 14.
  47. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
    [Crossref] [PubMed]
  48. C. K. Jørgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys. 8(3), 281–290 (1964).
    [Crossref]
  49. M. F. Reid and F. S. Richardson, “Electric dipole intensity parameters for lanthanide 4f → 4f transitions,” J. Chem. Phys. 79(12), 5735–5742 (1983).
    [Crossref]
  50. O. L. Malta and L. D. Carlos, “Intensities of 4f-4f transitions in glass materials,” Quim. Nova 26(6), 889–895 (2003).
    [Crossref]
  51. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  52. O. L. Malta and M. A. Couto dos Santos, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett. 174(1), 13–18 (1990).
    [Crossref]
  53. A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
    [Crossref]
  54. M. Finazzi and F. Ciccacci, “Plasmon-photon interaction in metal nanoparticles: Second-quantization perturbative approach,” Phys. Rev. B 86(3), 035428 (2012).
    [Crossref]
  55. V. A. G. Rivera, F. A. Ferri, L. A. O. Nunes, A. R. Zanatta, and E. Marega., “Focusing surface plasmons on Er3+ ions through gold planar plasmonic lenses,” Appl. Phys., A Mater. Sci. Process. 109(4), 1037–1041 (2012).
    [Crossref]
  56. V. A. G. Rivera, Y. Ledemi, M. El-Amraoui, Y. Messaddeq, and E. Marega., “Resonant near-infrared emission of Er3+ ions in plasmonic arrays of subwavelength square holes,” Proc. SPIE 8632, 863225 (2013).
    [Crossref]

2014 (1)

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega., “Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

2013 (4)

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, and S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23, 1789–1797 (2013).

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, F. A. Ferri, J. L. Ribeiro Sidney, L. A. O. Nunes, and E. Marega Jr, “Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass,” J. Non-Crys. Solids 378, 126–134 (2013).

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, F. A. Ferri, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Optical gain medium for plasmonic devices,” Proc. SPIE 8621, 86211J (2013).
[Crossref]

V. A. G. Rivera, Y. Ledemi, M. El-Amraoui, Y. Messaddeq, and E. Marega., “Resonant near-infrared emission of Er3+ ions in plasmonic arrays of subwavelength square holes,” Proc. SPIE 8632, 863225 (2013).
[Crossref]

2012 (11)

M. Finazzi and F. Ciccacci, “Plasmon-photon interaction in metal nanoparticles: Second-quantization perturbative approach,” Phys. Rev. B 86(3), 035428 (2012).
[Crossref]

V. A. G. Rivera, F. A. Ferri, L. A. O. Nunes, A. R. Zanatta, and E. Marega., “Focusing surface plasmons on Er3+ ions through gold planar plasmonic lenses,” Appl. Phys., A Mater. Sci. Process. 109(4), 1037–1041 (2012).
[Crossref]

. P. P. de Campos, L. R. P. Kassab, T. A. A. de Assumpção, D. S. da Silva, and C. B. de Araújo, “Infrared-to-visible upconversion emission in Er3+ doped TeO2-WO3-Bi2O3 glasses with silver nanoparticles,” J. Appl. Phys. 112(6), 063519 (2012).

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

K. Zhang, S. Zhou, Y. Zhuang, R. Yang, and J. Qiu, “Bandwidth broadening of near-infrared emission through nanocrystallization in Bi/Ni co-doped glass,” Opt. Express 20(8), 8675–8680 (2012).
[Crossref] [PubMed]

A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, “Formation mechanism of silver nanoparticles stabilized in glassy matrices,” J. Am. Chem. Soc. 134(45), 18824–18833 (2012).
[Crossref] [PubMed]

S. P. A. Osorio, V. A. G. Rivera, L. A. O. Nunes, E. Marega, D. Manzani, and Y. Messaddeq, “Plasmonic coupling in Er3+:Au tellurite glass,” Plasmonics 7(1), 53–58 (2012).
[Crossref]

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Efficient plasmonic coupling between Er3+:(Ag/Au) in tellurite glasses,” J. Non-Crys. Sol. 358, 399–405 (2012).

M. Reza Dousti, M. R. Sahar, R. J. Amjad, S. K. Ghoshal, A. Khorramnazari, A. Dordizadeh Basirabad, and A. Samavati, “Enhanced frequency upconversion in Er3+-doped sodium lead tellurite glass containing silver nanoparticles,” Eur. Phys. J. D 66(9), 237 (2012).
[Crossref]

B. Zhou, L. Tao, Y. H. Tsang, W. Jin, and E. Y. Pun, “Superbroadband near-infrared emission and energy transfer in Pr3+-Er3+ codoped fluorotellurite glasses,” Opt. Express 20(11), 12205–12211 (2012).
[Crossref] [PubMed]

2011 (4)

V. A. G. Rivera, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Study of Er3+ fluorescence on tellurite glasses containing Ag nanoparticles,” J. Phys. Conf. Ser. 274, 012123 (2011).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Growth of silver nano-particle embedded in tellurite glass: Interaction between localized surface plasmon resonance and Er3+ ions,” Opt. Mater. 33(6), 888–892 (2011).
[Crossref]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

2010 (5)

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
[Crossref]

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010).
[Crossref]

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Desevedavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express 18(24), 25321–25328 (2010).
[Crossref] [PubMed]

2009 (3)

M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19(13), 2045–2052 (2009).
[Crossref]

R. P. Kassab Luciana, R. De Almeida, D. M. Da Silva, A. A. De Assumpção Thiago, and C. B. De Araújo, “Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures,” J. Appl. Phys. 105, 103505 (2009).

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

2008 (1)

S. F. Zhou, N. Jiang, B. Zhu, H. C. Yang, S. Ye, G. Lakshminarayana, J. H. Hao, and J. R. Qiu, “Multifunctional Bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

2007 (1)

Y. Arai, T. Suzuki, Y. Ohishi, K. S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[Crossref]

2006 (1)

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref] [PubMed]

2005 (4)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M=Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
[Crossref] [PubMed]

S. X. Shen, A. Jha, L. H. Huang, and P. Joshi, “980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30(12), 1437–1439 (2005).
[Crossref] [PubMed]

2004 (3)

2003 (1)

O. L. Malta and L. D. Carlos, “Intensities of 4f-4f transitions in glass materials,” Quim. Nova 26(6), 889–895 (2003).
[Crossref]

2002 (2)

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[Crossref]

A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
[Crossref]

2000 (1)

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77(6), 818–820 (2000).
[Crossref]

1999 (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

1998 (1)

A. S. Oliveira, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, A. S. B. Sombra, and Y. Messaddeq, “Frequency up-conversion in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 72(7), 753–755 (1998).
[Crossref]

1997 (1)

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).

1994 (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

1990 (1)

O. L. Malta and M. A. Couto dos Santos, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett. 174(1), 13–18 (1990).
[Crossref]

1983 (1)

M. F. Reid and F. S. Richardson, “Electric dipole intensity parameters for lanthanide 4f → 4f transitions,” J. Chem. Phys. 79(12), 5735–5742 (1983).
[Crossref]

1964 (1)

C. K. Jørgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys. 8(3), 281–290 (1964).
[Crossref]

Abbas, A.

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, and S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23, 1789–1797 (2013).

Aegerter, M. A.

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).

Aizpurua, J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Amjad, R. J.

M. Reza Dousti, M. R. Sahar, R. J. Amjad, S. K. Ghoshal, A. Khorramnazari, A. Dordizadeh Basirabad, and A. Samavati, “Enhanced frequency upconversion in Er3+-doped sodium lead tellurite glass containing silver nanoparticles,” Eur. Phys. J. D 66(9), 237 (2012).
[Crossref]

Arai, Y.

Y. Arai, T. Suzuki, Y. Ohishi, K. S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[Crossref]

Archambault, A.

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
[Crossref]

Arnold, C.

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
[Crossref]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Baumberg, J. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Borisov, A. G.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Brilland, L.

Carlos, L. D.

O. L. Malta and L. D. Carlos, “Intensities of 4f-4f transitions in glass materials,” Quim. Nova 26(6), 889–895 (2003).
[Crossref]

Chen, D. P.

Ciccacci, F.

M. Finazzi and F. Ciccacci, “Plasmon-photon interaction in metal nanoparticles: Second-quantization perturbative approach,” Phys. Rev. B 86(3), 035428 (2012).
[Crossref]

Couto dos Santos, M. A.

O. L. Malta and M. A. Couto dos Santos, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett. 174(1), 13–18 (1990).
[Crossref]

Da Silva, D. M.

R. P. Kassab Luciana, R. De Almeida, D. M. Da Silva, A. A. De Assumpção Thiago, and C. B. De Araújo, “Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures,” J. Appl. Phys. 105, 103505 (2009).

da Silva, D. S.

. P. P. de Campos, L. R. P. Kassab, T. A. A. de Assumpção, D. S. da Silva, and C. B. de Araújo, “Infrared-to-visible upconversion emission in Er3+ doped TeO2-WO3-Bi2O3 glasses with silver nanoparticles,” J. Appl. Phys. 112(6), 063519 (2012).

De Almeida, R.

R. P. Kassab Luciana, R. De Almeida, D. M. Da Silva, A. A. De Assumpção Thiago, and C. B. De Araújo, “Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures,” J. Appl. Phys. 105, 103505 (2009).

de Araujo, M. T.

A. S. Oliveira, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, A. S. B. Sombra, and Y. Messaddeq, “Frequency up-conversion in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 72(7), 753–755 (1998).
[Crossref]

de Araújo, C. B.

. P. P. de Campos, L. R. P. Kassab, T. A. A. de Assumpção, D. S. da Silva, and C. B. de Araújo, “Infrared-to-visible upconversion emission in Er3+ doped TeO2-WO3-Bi2O3 glasses with silver nanoparticles,” J. Appl. Phys. 112(6), 063519 (2012).

R. P. Kassab Luciana, R. De Almeida, D. M. Da Silva, A. A. De Assumpção Thiago, and C. B. De Araújo, “Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures,” J. Appl. Phys. 105, 103505 (2009).

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).

de Assumpção, T. A. A.

. P. P. de Campos, L. R. P. Kassab, T. A. A. de Assumpção, D. S. da Silva, and C. B. de Araújo, “Infrared-to-visible upconversion emission in Er3+ doped TeO2-WO3-Bi2O3 glasses with silver nanoparticles,” J. Appl. Phys. 112(6), 063519 (2012).

De Assumpção Thiago, A. A.

R. P. Kassab Luciana, R. De Almeida, D. M. Da Silva, A. A. De Assumpção Thiago, and C. B. De Araújo, “Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures,” J. Appl. Phys. 105, 103505 (2009).

de Campos, . P. P.

. P. P. de Campos, L. R. P. Kassab, T. A. A. de Assumpção, D. S. da Silva, and C. B. de Araújo, “Infrared-to-visible upconversion emission in Er3+ doped TeO2-WO3-Bi2O3 glasses with silver nanoparticles,” J. Appl. Phys. 112(6), 063519 (2012).

Desevedavy, F.

Diddams, S. A.

Dordizadeh Basirabad, A.

M. Reza Dousti, M. R. Sahar, R. J. Amjad, S. K. Ghoshal, A. Khorramnazari, A. Dordizadeh Basirabad, and A. Samavati, “Enhanced frequency upconversion in Er3+-doped sodium lead tellurite glass containing silver nanoparticles,” Eur. Phys. J. D 66(9), 237 (2012).
[Crossref]

Eichelbaum, M.

M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19(13), 2045–2052 (2009).
[Crossref]

El-Amraoui, M.

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega., “Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

V. A. G. Rivera, Y. Ledemi, M. El-Amraoui, Y. Messaddeq, and E. Marega., “Resonant near-infrared emission of Er3+ ions in plasmonic arrays of subwavelength square holes,” Proc. SPIE 8632, 863225 (2013).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Desevedavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

El-Sayed, M. A.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Emmerling, F.

A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, “Formation mechanism of silver nanoparticles stabilized in glassy matrices,” J. Am. Chem. Soc. 134(45), 18824–18833 (2012).
[Crossref] [PubMed]

Esteban, R.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Eustis, S.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref] [PubMed]

Fatome, J.

Feng, X.

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77(6), 818–820 (2000).
[Crossref]

Ferri, F. A.

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, F. A. Ferri, J. L. Ribeiro Sidney, L. A. O. Nunes, and E. Marega Jr, “Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass,” J. Non-Crys. Solids 378, 126–134 (2013).

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, F. A. Ferri, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Optical gain medium for plasmonic devices,” Proc. SPIE 8621, 86211J (2013).
[Crossref]

V. A. G. Rivera, F. A. Ferri, L. A. O. Nunes, A. R. Zanatta, and E. Marega., “Focusing surface plasmons on Er3+ ions through gold planar plasmonic lenses,” Appl. Phys., A Mater. Sci. Process. 109(4), 1037–1041 (2012).
[Crossref]

Finazzi, M.

M. Finazzi and F. Ciccacci, “Plasmon-photon interaction in metal nanoparticles: Second-quantization perturbative approach,” Phys. Rev. B 86(3), 035428 (2012).
[Crossref]

Fortier, C.

Gadret, G.

Gao, W.

Ghoshal, S. K.

M. Reza Dousti, M. R. Sahar, R. J. Amjad, S. K. Ghoshal, A. Khorramnazari, A. Dordizadeh Basirabad, and A. Samavati, “Enhanced frequency upconversion in Er3+-doped sodium lead tellurite glass containing silver nanoparticles,” Eur. Phys. J. D 66(9), 237 (2012).
[Crossref]

Gouveia-Neto, A. S.

A. S. Oliveira, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, A. S. B. Sombra, and Y. Messaddeq, “Frequency up-conversion in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 72(7), 753–755 (1998).
[Crossref]

Greffet, J.-J.

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Hao, J.

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

Hao, J. H.

S. F. Zhou, N. Jiang, B. Zhu, H. C. Yang, S. Ye, G. Lakshminarayana, J. H. Hao, and J. R. Qiu, “Multifunctional Bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Hirao, K.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010).
[Crossref]

Huang, L. H.

Jain, P. K.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref] [PubMed]

Jha, A.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

S. X. Shen, A. Jha, L. H. Huang, and P. Joshi, “980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30(12), 1437–1439 (2005).
[Crossref] [PubMed]

Jiang, N.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

S. F. Zhou, N. Jiang, B. Zhu, H. C. Yang, S. Ye, G. Lakshminarayana, J. H. Hao, and J. R. Qiu, “Multifunctional Bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

Jiang, X.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Jiang, X. W.

Jin, W.

Jørgensen, C. G.

Jørgensen, C. K.

C. K. Jørgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys. 8(3), 281–290 (1964).
[Crossref]

Jose, G.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Joshi, P.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

S. X. Shen, A. Jha, L. H. Huang, and P. Joshi, “980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30(12), 1437–1439 (2005).
[Crossref] [PubMed]

Judd, B. R.

C. K. Jørgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys. 8(3), 281–290 (1964).
[Crossref]

Jules, J. C.

Karaveli, S.

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref] [PubMed]

Kassab, L. R. P.

. P. P. de Campos, L. R. P. Kassab, T. A. A. de Assumpção, D. S. da Silva, and C. B. de Araújo, “Infrared-to-visible upconversion emission in Er3+ doped TeO2-WO3-Bi2O3 glasses with silver nanoparticles,” J. Appl. Phys. 112(6), 063519 (2012).

Kassab Luciana, R. P.

R. P. Kassab Luciana, R. De Almeida, D. M. Da Silva, A. A. De Assumpção Thiago, and C. B. De Araújo, “Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures,” J. Appl. Phys. 105, 103505 (2009).

Kenyon, A. J.

A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
[Crossref]

Kharasch, E. D.

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, and S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23, 1789–1797 (2013).

Khonthon, S.

Y. Arai, T. Suzuki, Y. Ohishi, K. S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[Crossref]

Khorramnazari, A.

M. Reza Dousti, M. R. Sahar, R. J. Amjad, S. K. Ghoshal, A. Khorramnazari, A. Dordizadeh Basirabad, and A. Samavati, “Enhanced frequency upconversion in Er3+-doped sodium lead tellurite glass containing silver nanoparticles,” Eur. Phys. J. D 66(9), 237 (2012).
[Crossref]

Koshiba, M.

Krol, D.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010).
[Crossref]

Lakshminarayana, G.

S. F. Zhou, N. Jiang, B. Zhu, H. C. Yang, S. Ye, G. Lakshminarayana, J. H. Hao, and J. R. Qiu, “Multifunctional Bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

Ledemi, Y.

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega., “Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

V. A. G. Rivera, Y. Ledemi, M. El-Amraoui, Y. Messaddeq, and E. Marega., “Resonant near-infrared emission of Er3+ ions in plasmonic arrays of subwavelength square holes,” Proc. SPIE 8632, 863225 (2013).
[Crossref]

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, F. A. Ferri, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Optical gain medium for plasmonic devices,” Proc. SPIE 8621, 86211J (2013).
[Crossref]

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, F. A. Ferri, J. L. Ribeiro Sidney, L. A. O. Nunes, and E. Marega Jr, “Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass,” J. Non-Crys. Solids 378, 126–134 (2013).

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Efficient plasmonic coupling between Er3+:(Ag/Au) in tellurite glasses,” J. Non-Crys. Sol. 358, 399–405 (2012).

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express 18(24), 25321–25328 (2010).
[Crossref] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Lousteau, J.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Maciel, G. S.

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Malta, O. L.

O. L. Malta and L. D. Carlos, “Intensities of 4f-4f transitions in glass materials,” Quim. Nova 26(6), 889–895 (2003).
[Crossref]

O. L. Malta and M. A. Couto dos Santos, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett. 174(1), 13–18 (1990).
[Crossref]

Manzani, D.

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, F. A. Ferri, J. L. Ribeiro Sidney, L. A. O. Nunes, and E. Marega Jr, “Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass,” J. Non-Crys. Solids 378, 126–134 (2013).

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Efficient plasmonic coupling between Er3+:(Ag/Au) in tellurite glasses,” J. Non-Crys. Sol. 358, 399–405 (2012).

S. P. A. Osorio, V. A. G. Rivera, L. A. O. Nunes, E. Marega, D. Manzani, and Y. Messaddeq, “Plasmonic coupling in Er3+:Au tellurite glass,” Plasmonics 7(1), 53–58 (2012).
[Crossref]

V. A. G. Rivera, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Study of Er3+ fluorescence on tellurite glasses containing Ag nanoparticles,” J. Phys. Conf. Ser. 274, 012123 (2011).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Growth of silver nano-particle embedded in tellurite glass: Interaction between localized surface plasmon resonance and Er3+ ions,” Opt. Mater. 33(6), 888–892 (2011).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express 18(24), 25321–25328 (2010).
[Crossref] [PubMed]

Marega, E.

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega., “Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

V. A. G. Rivera, Y. Ledemi, M. El-Amraoui, Y. Messaddeq, and E. Marega., “Resonant near-infrared emission of Er3+ ions in plasmonic arrays of subwavelength square holes,” Proc. SPIE 8632, 863225 (2013).
[Crossref]

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, F. A. Ferri, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Optical gain medium for plasmonic devices,” Proc. SPIE 8621, 86211J (2013).
[Crossref]

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Efficient plasmonic coupling between Er3+:(Ag/Au) in tellurite glasses,” J. Non-Crys. Sol. 358, 399–405 (2012).

S. P. A. Osorio, V. A. G. Rivera, L. A. O. Nunes, E. Marega, D. Manzani, and Y. Messaddeq, “Plasmonic coupling in Er3+:Au tellurite glass,” Plasmonics 7(1), 53–58 (2012).
[Crossref]

V. A. G. Rivera, F. A. Ferri, L. A. O. Nunes, A. R. Zanatta, and E. Marega., “Focusing surface plasmons on Er3+ ions through gold planar plasmonic lenses,” Appl. Phys., A Mater. Sci. Process. 109(4), 1037–1041 (2012).
[Crossref]

V. A. G. Rivera, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Study of Er3+ fluorescence on tellurite glasses containing Ag nanoparticles,” J. Phys. Conf. Ser. 274, 012123 (2011).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Growth of silver nano-particle embedded in tellurite glass: Interaction between localized surface plasmon resonance and Er3+ ions,” Opt. Mater. 33(6), 888–892 (2011).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express 18(24), 25321–25328 (2010).
[Crossref] [PubMed]

Marega Jr, E.

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, F. A. Ferri, J. L. Ribeiro Sidney, L. A. O. Nunes, and E. Marega Jr, “Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass,” J. Non-Crys. Solids 378, 126–134 (2013).

Marquier, F.

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Medeiros Neto, J. A.

A. S. Oliveira, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, A. S. B. Sombra, and Y. Messaddeq, “Frequency up-conversion in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 72(7), 753–755 (1998).
[Crossref]

Meng, X.

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M=Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

Meng, X. G.

Messaddeq, Y.

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega., “Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

V. A. G. Rivera, Y. Ledemi, M. El-Amraoui, Y. Messaddeq, and E. Marega., “Resonant near-infrared emission of Er3+ ions in plasmonic arrays of subwavelength square holes,” Proc. SPIE 8632, 863225 (2013).
[Crossref]

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, F. A. Ferri, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Optical gain medium for plasmonic devices,” Proc. SPIE 8621, 86211J (2013).
[Crossref]

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Efficient plasmonic coupling between Er3+:(Ag/Au) in tellurite glasses,” J. Non-Crys. Sol. 358, 399–405 (2012).

S. P. A. Osorio, V. A. G. Rivera, L. A. O. Nunes, E. Marega, D. Manzani, and Y. Messaddeq, “Plasmonic coupling in Er3+:Au tellurite glass,” Plasmonics 7(1), 53–58 (2012).
[Crossref]

V. A. G. Rivera, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Study of Er3+ fluorescence on tellurite glasses containing Ag nanoparticles,” J. Phys. Conf. Ser. 274, 012123 (2011).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Growth of silver nano-particle embedded in tellurite glass: Interaction between localized surface plasmon resonance and Er3+ ions,” Opt. Mater. 33(6), 888–892 (2011).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express 18(24), 25321–25328 (2010).
[Crossref] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Desevedavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

A. S. Oliveira, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, A. S. B. Sombra, and Y. Messaddeq, “Frequency up-conversion in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 72(7), 753–755 (1998).
[Crossref]

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).

Miura, K.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

Morimoto, K. S.

Y. Arai, T. Suzuki, Y. Ohishi, K. S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[Crossref]

Morrissey, J. J.

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, and S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23, 1789–1797 (2013).

Newbury, N. R.

Nicholson, J. W.

Nishi, M.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

Nunes, L. A. O.

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, F. A. Ferri, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Optical gain medium for plasmonic devices,” Proc. SPIE 8621, 86211J (2013).
[Crossref]

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, F. A. Ferri, J. L. Ribeiro Sidney, L. A. O. Nunes, and E. Marega Jr, “Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass,” J. Non-Crys. Solids 378, 126–134 (2013).

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Efficient plasmonic coupling between Er3+:(Ag/Au) in tellurite glasses,” J. Non-Crys. Sol. 358, 399–405 (2012).

S. P. A. Osorio, V. A. G. Rivera, L. A. O. Nunes, E. Marega, D. Manzani, and Y. Messaddeq, “Plasmonic coupling in Er3+:Au tellurite glass,” Plasmonics 7(1), 53–58 (2012).
[Crossref]

V. A. G. Rivera, F. A. Ferri, L. A. O. Nunes, A. R. Zanatta, and E. Marega., “Focusing surface plasmons on Er3+ ions through gold planar plasmonic lenses,” Appl. Phys., A Mater. Sci. Process. 109(4), 1037–1041 (2012).
[Crossref]

V. A. G. Rivera, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Study of Er3+ fluorescence on tellurite glasses containing Ag nanoparticles,” J. Phys. Conf. Ser. 274, 012123 (2011).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Growth of silver nano-particle embedded in tellurite glass: Interaction between localized surface plasmon resonance and Er3+ ions,” Opt. Mater. 33(6), 888–892 (2011).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express 18(24), 25321–25328 (2010).
[Crossref] [PubMed]

Ohishi, Y.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Desevedavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

Y. Arai, T. Suzuki, Y. Ohishi, K. S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[Crossref]

T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass,” Appl. Phys. Lett. 84(19), 3804–3806 (2004).
[Crossref]

Oliveira, A. S.

A. S. Oliveira, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, A. S. B. Sombra, and Y. Messaddeq, “Frequency up-conversion in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 72(7), 753–755 (1998).
[Crossref]

Osorio, S. P. A.

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, F. A. Ferri, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Optical gain medium for plasmonic devices,” Proc. SPIE 8621, 86211J (2013).
[Crossref]

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, F. A. Ferri, J. L. Ribeiro Sidney, L. A. O. Nunes, and E. Marega Jr, “Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass,” J. Non-Crys. Solids 378, 126–134 (2013).

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Efficient plasmonic coupling between Er3+:(Ag/Au) in tellurite glasses,” J. Non-Crys. Sol. 358, 399–405 (2012).

S. P. A. Osorio, V. A. G. Rivera, L. A. O. Nunes, E. Marega, D. Manzani, and Y. Messaddeq, “Plasmonic coupling in Er3+:Au tellurite glass,” Plasmonics 7(1), 53–58 (2012).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Growth of silver nano-particle embedded in tellurite glass: Interaction between localized surface plasmon resonance and Er3+ ions,” Opt. Mater. 33(6), 888–892 (2011).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express 18(24), 25321–25328 (2010).
[Crossref] [PubMed]

Peng, M.

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M=Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

Peng, M. Y.

Pfänder, N.

A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, “Formation mechanism of silver nanoparticles stabilized in glassy matrices,” J. Am. Chem. Soc. 134(45), 18824–18833 (2012).
[Crossref] [PubMed]

Polte, J.

A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, “Formation mechanism of silver nanoparticles stabilized in glassy matrices,” J. Am. Chem. Soc. 134(45), 18824–18833 (2012).
[Crossref] [PubMed]

Pun, E. Y.

Qiu, J.

K. Zhang, S. Zhou, Y. Zhuang, R. Yang, and J. Qiu, “Bandwidth broadening of near-infrared emission through nanocrystallization in Bi/Ni co-doped glass,” Opt. Express 20(8), 8675–8680 (2012).
[Crossref] [PubMed]

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M=Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

Qiu, J. R.

S. F. Zhou, N. Jiang, B. Zhu, H. C. Yang, S. Ye, G. Lakshminarayana, J. H. Hao, and J. R. Qiu, “Multifunctional Bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
[Crossref] [PubMed]

Rademann, K.

A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, “Formation mechanism of silver nanoparticles stabilized in glassy matrices,” J. Am. Chem. Soc. 134(45), 18824–18833 (2012).
[Crossref] [PubMed]

M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19(13), 2045–2052 (2009).
[Crossref]

Reid, M. F.

M. F. Reid and F. S. Richardson, “Electric dipole intensity parameters for lanthanide 4f → 4f transitions,” J. Chem. Phys. 79(12), 5735–5742 (1983).
[Crossref]

Reza Dousti, M.

M. Reza Dousti, M. R. Sahar, R. J. Amjad, S. K. Ghoshal, A. Khorramnazari, A. Dordizadeh Basirabad, and A. Samavati, “Enhanced frequency upconversion in Er3+-doped sodium lead tellurite glass containing silver nanoparticles,” Eur. Phys. J. D 66(9), 237 (2012).
[Crossref]

Ribeiro Sidney, J. L.

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, F. A. Ferri, J. L. Ribeiro Sidney, L. A. O. Nunes, and E. Marega Jr, “Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass,” J. Non-Crys. Solids 378, 126–134 (2013).

Richards, B.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Richardson, F. S.

M. F. Reid and F. S. Richardson, “Electric dipole intensity parameters for lanthanide 4f → 4f transitions,” J. Chem. Phys. 79(12), 5735–5742 (1983).
[Crossref]

Richardson, K.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010).
[Crossref]

Rivera, V. A. G.

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega., “Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

V. A. G. Rivera, Y. Ledemi, M. El-Amraoui, Y. Messaddeq, and E. Marega., “Resonant near-infrared emission of Er3+ ions in plasmonic arrays of subwavelength square holes,” Proc. SPIE 8632, 863225 (2013).
[Crossref]

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, F. A. Ferri, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Optical gain medium for plasmonic devices,” Proc. SPIE 8621, 86211J (2013).
[Crossref]

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, F. A. Ferri, J. L. Ribeiro Sidney, L. A. O. Nunes, and E. Marega Jr, “Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass,” J. Non-Crys. Solids 378, 126–134 (2013).

S. P. A. Osorio, V. A. G. Rivera, L. A. O. Nunes, E. Marega, D. Manzani, and Y. Messaddeq, “Plasmonic coupling in Er3+:Au tellurite glass,” Plasmonics 7(1), 53–58 (2012).
[Crossref]

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Efficient plasmonic coupling between Er3+:(Ag/Au) in tellurite glasses,” J. Non-Crys. Sol. 358, 399–405 (2012).

V. A. G. Rivera, F. A. Ferri, L. A. O. Nunes, A. R. Zanatta, and E. Marega., “Focusing surface plasmons on Er3+ ions through gold planar plasmonic lenses,” Appl. Phys., A Mater. Sci. Process. 109(4), 1037–1041 (2012).
[Crossref]

V. A. G. Rivera, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Study of Er3+ fluorescence on tellurite glasses containing Ag nanoparticles,” J. Phys. Conf. Ser. 274, 012123 (2011).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Growth of silver nano-particle embedded in tellurite glass: Interaction between localized surface plasmon resonance and Er3+ ions,” Opt. Mater. 33(6), 888–892 (2011).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express 18(24), 25321–25328 (2010).
[Crossref] [PubMed]

Sahar, M. R.

M. Reza Dousti, M. R. Sahar, R. J. Amjad, S. K. Ghoshal, A. Khorramnazari, A. Dordizadeh Basirabad, and A. Samavati, “Enhanced frequency upconversion in Er3+-doped sodium lead tellurite glass containing silver nanoparticles,” Eur. Phys. J. D 66(9), 237 (2012).
[Crossref]

Saitoh, K.

Sakakura, M.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

Samavati, A.

M. Reza Dousti, M. R. Sahar, R. J. Amjad, S. K. Ghoshal, A. Khorramnazari, A. Dordizadeh Basirabad, and A. Samavati, “Enhanced frequency upconversion in Er3+-doped sodium lead tellurite glass containing silver nanoparticles,” Eur. Phys. J. D 66(9), 237 (2012).
[Crossref]

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Shen, S. X.

Shimizu, M.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

Shimotsuma, Y.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

Simo, A.

A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, “Formation mechanism of silver nanoparticles stabilized in glassy matrices,” J. Am. Chem. Soc. 134(45), 18824–18833 (2012).
[Crossref] [PubMed]

Singamaneni, S.

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, and S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23, 1789–1797 (2013).

Skripatchev, I.

Smektala, F.

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Sombra, A. S. B.

A. S. Oliveira, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, A. S. B. Sombra, and Y. Messaddeq, “Frequency up-conversion in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 72(7), 753–755 (1998).
[Crossref]

Suzuki, T.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Desevedavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

Y. Arai, T. Suzuki, Y. Ohishi, K. S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[Crossref]

T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass,” Appl. Phys. Lett. 84(19), 3804–3806 (2004).
[Crossref]

Tanabe, S.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[Crossref]

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77(6), 818–820 (2000).
[Crossref]

Tao, L.

Teddy-Fernandez, T.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Tian, L.

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, and S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23, 1789–1797 (2013).

Troles, J.

Tsang, Y. H.

Vainio, U.

A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, “Formation mechanism of silver nanoparticles stabilized in glassy matrices,” J. Am. Chem. Soc. 134(45), 18824–18833 (2012).
[Crossref] [PubMed]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Washburn, B. R.

Wu, B.

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

Yan, M. F.

Yang, H. C.

S. F. Zhou, N. Jiang, B. Zhu, H. C. Yang, S. Ye, G. Lakshminarayana, J. H. Hao, and J. R. Qiu, “Multifunctional Bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

Yang, R.

Ye, S.

S. F. Zhou, N. Jiang, B. Zhu, H. C. Yang, S. Ye, G. Lakshminarayana, J. H. Hao, and J. R. Qiu, “Multifunctional Bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

Zanatta, A. R.

V. A. G. Rivera, F. A. Ferri, L. A. O. Nunes, A. R. Zanatta, and E. Marega., “Focusing surface plasmons on Er3+ ions through gold planar plasmonic lenses,” Appl. Phys., A Mater. Sci. Process. 109(4), 1037–1041 (2012).
[Crossref]

Zhang, K.

Zhao, Q.

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M=Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

Zhao, Q. Z.

Zhou, B.

Zhou, S.

K. Zhang, S. Zhou, Y. Zhuang, R. Yang, and J. Qiu, “Bandwidth broadening of near-infrared emission through nanocrystallization in Bi/Ni co-doped glass,” Opt. Express 20(8), 8675–8680 (2012).
[Crossref] [PubMed]

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

Zhou, S. F.

S. F. Zhou, N. Jiang, B. Zhu, H. C. Yang, S. Ye, G. Lakshminarayana, J. H. Hao, and J. R. Qiu, “Multifunctional Bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

Zhu, B.

S. F. Zhou, N. Jiang, B. Zhu, H. C. Yang, S. Ye, G. Lakshminarayana, J. H. Hao, and J. R. Qiu, “Multifunctional Bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

Zhu, C.

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M=Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

Zhu, C. S.

Zhuang, Y.

Zia, R.

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (4)

S. F. Zhou, N. Jiang, B. Zhu, H. C. Yang, S. Ye, G. Lakshminarayana, J. H. Hao, and J. R. Qiu, “Multifunctional Bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[Crossref]

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19(13), 2045–2052 (2009).
[Crossref]

A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, and S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23, 1789–1797 (2013).

Appl. Phys. Lett. (4)

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77(6), 818–820 (2000).
[Crossref]

T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass,” Appl. Phys. Lett. 84(19), 3804–3806 (2004).
[Crossref]

Y. Arai, T. Suzuki, Y. Ohishi, K. S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[Crossref]

A. S. Oliveira, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, A. S. B. Sombra, and Y. Messaddeq, “Frequency up-conversion in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 72(7), 753–755 (1998).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

V. A. G. Rivera, F. A. Ferri, L. A. O. Nunes, A. R. Zanatta, and E. Marega., “Focusing surface plasmons on Er3+ ions through gold planar plasmonic lenses,” Appl. Phys., A Mater. Sci. Process. 109(4), 1037–1041 (2012).
[Crossref]

C. R. Chim. (1)

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[Crossref]

Chem. Phys. Lett. (2)

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M=Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[Crossref]

O. L. Malta and M. A. Couto dos Santos, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett. 174(1), 13–18 (1990).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Eur. Phys. J. D (1)

M. Reza Dousti, M. R. Sahar, R. J. Amjad, S. K. Ghoshal, A. Khorramnazari, A. Dordizadeh Basirabad, and A. Samavati, “Enhanced frequency upconversion in Er3+-doped sodium lead tellurite glass containing silver nanoparticles,” Eur. Phys. J. D 66(9), 237 (2012).
[Crossref]

Int. J. Appl. Glass Sci. (1)

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010).
[Crossref]

J. Am. Chem. Soc. (2)

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, “Formation mechanism of silver nanoparticles stabilized in glassy matrices,” J. Am. Chem. Soc. 134(45), 18824–18833 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (3)

R. P. Kassab Luciana, R. De Almeida, D. M. Da Silva, A. A. De Assumpção Thiago, and C. B. De Araújo, “Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures,” J. Appl. Phys. 105, 103505 (2009).

. P. P. de Campos, L. R. P. Kassab, T. A. A. de Assumpção, D. S. da Silva, and C. B. de Araújo, “Infrared-to-visible upconversion emission in Er3+ doped TeO2-WO3-Bi2O3 glasses with silver nanoparticles,” J. Appl. Phys. 112(6), 063519 (2012).

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

J. Chem. Phys. (1)

M. F. Reid and F. S. Richardson, “Electric dipole intensity parameters for lanthanide 4f → 4f transitions,” J. Chem. Phys. 79(12), 5735–5742 (1983).
[Crossref]

J. Lumin. (1)

V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, and E. Marega., “Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014).
[Crossref]

J. Non-Crys. Sol. (1)

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Efficient plasmonic coupling between Er3+:(Ag/Au) in tellurite glasses,” J. Non-Crys. Sol. 358, 399–405 (2012).

J. Non-Crys. Solids (1)

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, F. A. Ferri, J. L. Ribeiro Sidney, L. A. O. Nunes, and E. Marega Jr, “Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass,” J. Non-Crys. Solids 378, 126–134 (2013).

J. Phys. Chem. B (2)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[Crossref] [PubMed]

J. Phys. Conf. Ser. (1)

V. A. G. Rivera, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Study of Er3+ fluorescence on tellurite glasses containing Ag nanoparticles,” J. Phys. Conf. Ser. 274, 012123 (2011).
[Crossref]

Mol. Phys. (1)

C. K. Jørgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys. 8(3), 281–290 (1964).
[Crossref]

Nature (1)

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. (2)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

V. A. G. Rivera, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Growth of silver nano-particle embedded in tellurite glass: Interaction between localized surface plasmon resonance and Er3+ ions,” Opt. Mater. 33(6), 888–892 (2011).
[Crossref]

Phys. Rev. B (3)

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82(3), 035411 (2010).
[Crossref]

M. Finazzi and F. Ciccacci, “Plasmon-photon interaction in metal nanoparticles: Second-quantization perturbative approach,” Phys. Rev. B 86(3), 035428 (2012).
[Crossref]

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55(10), 6335–6342 (1997).

Phys. Rev. Lett. (1)

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref] [PubMed]

Plasmonics (1)

S. P. A. Osorio, V. A. G. Rivera, L. A. O. Nunes, E. Marega, D. Manzani, and Y. Messaddeq, “Plasmonic coupling in Er3+:Au tellurite glass,” Plasmonics 7(1), 53–58 (2012).
[Crossref]

Proc. SPIE (2)

V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, F. A. Ferri, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Optical gain medium for plasmonic devices,” Proc. SPIE 8621, 86211J (2013).
[Crossref]

V. A. G. Rivera, Y. Ledemi, M. El-Amraoui, Y. Messaddeq, and E. Marega., “Resonant near-infrared emission of Er3+ ions in plasmonic arrays of subwavelength square holes,” Proc. SPIE 8632, 863225 (2013).
[Crossref]

Prog. Mater. Sci. (1)

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Prog. Quantum Electron. (1)

A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
[Crossref]

Quim. Nova (1)

O. L. Malta and L. D. Carlos, “Intensities of 4f-4f transitions in glass materials,” Quim. Nova 26(6), 889–895 (2003).
[Crossref]

Other (7)

V. A. G. Rivera, Ion Exchange Technology I, (Springer, 2012), Chap. 14.

V. A. G. Rivera, F. A. Ferri, and E. Marega, Jr., Plasmonics - Principles and Applications (InTech, 2012), Chap. 11.

K. A. Varshneya, H. A. Richardson, M. Wightman, and L. D. Pye, Processing, Properties and Applications of Glass and Optical Materials (John Wiley, 2012).

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University, 2000).

R. A. H. El-Mallawany, Tellurite Glasses Handbook – Physical Properties and Data (CRC Press, 2001).

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley, 2002).

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (TM Marcel Dekker, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Optical dark-field microscopic images of the NPs embedded in T5S12 (a) and T5G12 (b) samples.
Fig. 2
Fig. 2 Absorption spectra of (a) T5Sy, (b) T6Sy, (c) T5Gy, and (d) T6Gy glass samples. The inset shows a zoom of the absorption bands of transitions (a) 3H63F4, (b) 3H63H5, (c) 3H63H4 and (d) 3H63F2-3 in Tm3+ ions. All spectra show a high absorption of the Er3+ ions without NPs in comparison with the other samples, since the NPs increase the absorption these glasses.
Fig. 3
Fig. 3 Near infrared luminescence spectra under excitation at 976 nm of (a) T5Sy, (b) T6Sy, (c) T5Gy, and (d) T6Gy glass samples showing the 4I13/24I15/2 and 3F43H6 radiative transitions of the Er3+ and Tm3+ ions, respectively, and their splitting due to the Stark effect.
Fig. 4
Fig. 4 Schematic representation of the Er3+-Tm3+:NP interactions in two different scenarios: (a) the RE ions do not interact with each other, but with the NP and; (b) the interaction occurs between NP:RE and RE1:RE2. Equipotential surface (electric multipole coupling) with electric potentials −V/2 and + V/2 between NP:REs, d = 1,2 | r i R j | .
Fig. 5
Fig. 5 (a) Intensity of the emission peaks at 1535 ± 6 nm (4I13/24I15/2 transition of Er3+ ion) and 1795 ± 8 nm (3F43H6 transition of Tm3+ ion) for the TxMy samples studied. (b) Bandwidth of the emission band centered at 1535 ± 6 nm for the TxMy samples studied. (c) Emission spectra of the T5S08 and T6S10 samples which exhibit the most intense emission, and T5G08, T5G10, T6G02 and T6G12 samples which exhibit the broadest band.
Fig. 6
Fig. 6 Schematic energy level diagrams of (a) TxSy samples and (b) TxGy samples. Ground state absorption (GSA) of the Er3+ under 976 nm excitation resulting in a population inversion of the high (via ESA) and lower levels through nonradiative (NR) decays. Radiative ET among Er3+-Tm3+ ions (ETiE-iT), nonradiative energy transfer ETNR, and ET between the NP:RE (ETSNP or ETGNP). τNP is the finite plasmon lifetime (ns order) and the red curved lines represent the displacement of a small volume charge n j = q p,j ( r ) e i ω p t to the quantum system.
Fig. 7
Fig. 7 Lifetime of the Er3+:4I13/2 level for all samples studied. Dashed and dotted lines indicate, respectively, the lifetime of the sample without SNP and GNP for comparison. The T5G08, T5G10, T6G02 and T6G12 samples exhibit an expanded broadband (↔). The T5S08, T6S10 and T5G10 samples exhibit an improved luminescence (↑).

Tables (1)

Tables Icon

Table 1 Measured and calculated physical properties of TxMy glass samples: glass density, number (ionic or atomic) density N and average distance between rare-earth-ions and metallic-atoms (M0).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r Er 3+ Ag 0 < r Er 3+ Au 0 for all the samples
r Tm 3+ Au 0 < r Tm 3+ Ag 0 for all the samples

Metrics