Abstract

We demonstrate a polarization-managed 8-dimensional modulation format that is time domain coded to reduce inter-channel nonlinearity. Simulation results show a 2.3 dB improvement in maximum net system margin (NSM) relative to polarization multiplexed (PM)-BPSK, and a 1.0 dB improvement relative to time interleaved return-to-zero (RZ)-PM-BPSK, for five WDM channels propagating over 1600 km ELEAF with 90% inline optical dispersion compensation. In contrast to the other modulations considered, the new 8-dimensional format has negligible sensitivity to the polarization states of the neighboring WDM channels. High-density WDM (HD-WDM) measurements on a 5000 km dispersion-managed link show a 1.0 dB improvement in net system margin relative to PM-BPSK.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Impact of nonlinear signal-noise interactions on symbol-aligned and -interleaved formats in dispersion managed coherent PM-QPSK systems

Xiaogang Yi, Yan Li, Jian Wu, Kun Xu, and Jintong Lin
Opt. Express 20(15) 17183-17191 (2012)

Nonlinear signal-noise interactions in dispersion managed coherent PM-QPSK systems in the presence of PMD

Xiaogang Yi, Jian Wu, Yan Li, Wei Li, Xiaobin Hong, Hongxiang Guo, Yong Zuo, and Jintong Lin
Opt. Express 20(25) 27596-27602 (2012)

High-dimensional modulation for coherent optical communications systems

David S. Millar, Toshiaki Koike-Akino, Sercan Ö. Arık, Keisuke Kojima, Kieran Parsons, Tsuyoshi Yoshida, and Takashi Sugihara
Opt. Express 22(7) 8798-8812 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol. 27(22), 5115–5126 (2009).
    [Crossref]
  2. M. Salsi, “Ultra-long-haul coherent transmission for submarine applications,” in 36th European Conference and Exhibition on Optical Communication (ECOC 2010) (2010), We.7.C.1.
    [Crossref]
  3. C. Xie, “Interchannel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift-keying systems,” Photon. Technol. Lett. 21(5), 274–276 (2009).
    [Crossref]
  4. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  5. Y. Gao, J. C. Cartledge, A. S. Karar, and S. S.-H. Yam, “Reducing the complexity of nonlinearity pre-compensation using symmetric EDC and pulse shaping,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013) (2013), PD3.E.5.
    [Crossref]
  6. A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, “Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses,” Photon. Technol. Lett. 13(5), 445–447 (2001).
    [Crossref]
  7. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photon. 7(7), 560–568 (2013).
    [Crossref]
  8. C. Xie, I. Kang, A. H. Gnauck, L. Möller, L. F. Mollenauer, and A. R. Grant, “Suppression of intrachannel nonlinear effects with alternate-polarization formats,” J. Lightwave Technol. 22(3), 806–812 (2004).
    [Crossref]
  9. R. Rios-Muller, J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, G. Charlet, and S. Bigo, “Experimental comparison between Hybrid-QPSK/8QAM and 4D-32SP-16QAM formats at 31.2 GBaud using Nyquist pulse shaping,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013) (2013), Th.2.D.2.
    [Crossref]
  10. C. Xie, L. Möller, D. C. Kilper, and L. F. Mollenauer, “Effect of cross-phase-modulation-induced polarization scattering on optical polarization mode dispersion compensation in wavelength-division-multiplexed systems,” Opt. Lett. 28(23), 2303–2305 (2003).
    [Crossref] [PubMed]
  11. P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightwave Technol. 30(24), 3857–3879 (2012).
    [Crossref]
  12. T. A. Eriksson, P. Johannisson, M. Sjodin, E. Agrell, P. A. Andrekson, and M. Karlsson, “Frequency and polarization switched QPSK,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013) (2013), Th2.D.4.
    [Crossref]
  13. E. Meron, A. Andrusier, M. Feder, and M. Shtaif, “Use of space-time coding in coherent polarization-multiplexed systems suffering from polarization-dependent loss,” Opt. Lett. 35(21), 3547–3549 (2010).
    [Crossref] [PubMed]
  14. S. Pachnicke, Fiber-Optic Transmission Networks (Springer, 2012), 157.
  15. D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
    [Crossref]
  16. M. Reimer, A. Borowiec, X. Tang, C. Laperle, and M. O'Sullivan, “Direct measurement of nonlinear WDM crosstalk using coherent optical detection,” in IEEE Photonics Conference (IPC) (2012), 322–323.
    [Crossref]
  17. M. Karlsson and J. Brentel, “Autocorrelation function of the polarization-mode dispersion vector,” Opt. Lett. 24(14), 939–941 (1999).
    [Crossref] [PubMed]
  18. Corning, “Vascade Optical Fibers, Product Information,” August 2012 (available online).
  19. K. Roberts, M. O’Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009).
    [Crossref]

2013 (1)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photon. 7(7), 560–568 (2013).
[Crossref]

2012 (1)

2010 (1)

2009 (3)

2008 (1)

2004 (1)

2003 (1)

2001 (1)

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, “Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses,” Photon. Technol. Lett. 13(5), 445–447 (2001).
[Crossref]

1999 (1)

1997 (1)

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

Agrell, E.

Andrusier, A.

Awadalla, A.

Brentel, J.

Chandrasekhar, S.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photon. 7(7), 560–568 (2013).
[Crossref]

Chraplyvy, A. R.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photon. 7(7), 560–568 (2013).
[Crossref]

Clausen, C. B.

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, “Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses,” Photon. Technol. Lett. 13(5), 445–447 (2001).
[Crossref]

Feder, M.

Gnauck, A. H.

C. Xie, I. Kang, A. H. Gnauck, L. Möller, L. F. Mollenauer, and A. R. Grant, “Suppression of intrachannel nonlinear effects with alternate-polarization formats,” J. Lightwave Technol. 22(3), 806–812 (2004).
[Crossref]

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, “Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses,” Photon. Technol. Lett. 13(5), 445–447 (2001).
[Crossref]

Grant, A. R.

Ip, E.

Kahn, J. M.

Kang, I.

Karlsson, M.

Kilper, D. C.

Krause, D. J.

Laperle, C.

Liu, X.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photon. 7(7), 560–568 (2013).
[Crossref]

Manyuk, C. R.

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

Marcuse, D.

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

Mecozzi, A.

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, “Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses,” Photon. Technol. Lett. 13(5), 445–447 (2001).
[Crossref]

Meron, E.

Mollenauer, L. F.

Möller, L.

O’Sullivan, M.

Park, S.-G.

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, “Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses,” Photon. Technol. Lett. 13(5), 445–447 (2001).
[Crossref]

Poggiolini, P.

Roberts, K.

Shtaif, M.

E. Meron, A. Andrusier, M. Feder, and M. Shtaif, “Use of space-time coding in coherent polarization-multiplexed systems suffering from polarization-dependent loss,” Opt. Lett. 35(21), 3547–3549 (2010).
[Crossref] [PubMed]

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, “Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses,” Photon. Technol. Lett. 13(5), 445–447 (2001).
[Crossref]

Sun, H.

Tkach, R. W.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photon. 7(7), 560–568 (2013).
[Crossref]

Wai, P. K. A.

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[Crossref]

Winzer, P. J.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photon. 7(7), 560–568 (2013).
[Crossref]

Wu, K.-T.

Xie, C.

J. Lightwave Technol. (6)

Nat. Photon. (1)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photon. 7(7), 560–568 (2013).
[Crossref]

Opt. Lett. (3)

Photon. Technol. Lett. (2)

C. Xie, “Interchannel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift-keying systems,” Photon. Technol. Lett. 21(5), 274–276 (2009).
[Crossref]

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, “Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses,” Photon. Technol. Lett. 13(5), 445–447 (2001).
[Crossref]

Other (7)

R. Rios-Muller, J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, G. Charlet, and S. Bigo, “Experimental comparison between Hybrid-QPSK/8QAM and 4D-32SP-16QAM formats at 31.2 GBaud using Nyquist pulse shaping,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013) (2013), Th.2.D.2.
[Crossref]

Y. Gao, J. C. Cartledge, A. S. Karar, and S. S.-H. Yam, “Reducing the complexity of nonlinearity pre-compensation using symmetric EDC and pulse shaping,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013) (2013), PD3.E.5.
[Crossref]

M. Salsi, “Ultra-long-haul coherent transmission for submarine applications,” in 36th European Conference and Exhibition on Optical Communication (ECOC 2010) (2010), We.7.C.1.
[Crossref]

S. Pachnicke, Fiber-Optic Transmission Networks (Springer, 2012), 157.

M. Reimer, A. Borowiec, X. Tang, C. Laperle, and M. O'Sullivan, “Direct measurement of nonlinear WDM crosstalk using coherent optical detection,” in IEEE Photonics Conference (IPC) (2012), 322–323.
[Crossref]

T. A. Eriksson, P. Johannisson, M. Sjodin, E. Agrell, P. A. Andrekson, and M. Karlsson, “Frequency and polarization switched QPSK,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013) (2013), Th2.D.4.
[Crossref]

Corning, “Vascade Optical Fibers, Product Information,” August 2012 (available online).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Back-to-back BER with respect to OSNR in a 0.1 nm reference bandwidth for PM-BPSK (green) and the X-constellation (blue) for a 35 GHz signaling rate. (b) Simulated NSM, relative to the maximum NSM of PM-BPSK, for 5 channels with 50 GHz spacing propagated over 1600 km of ELEAF with 90% inline optical dispersion compensation.
Fig. 2
Fig. 2 (a) The 5000 km testbed dispersion map and (b) WDM channel configuration for the 5000 km fiber link. The 9 HD-WDM (37.5 GHz spaced) channels are illustrated in blue except for the test channel which is plotted in red.
Fig. 3
Fig. 3 System configuration: Two 4 channel groups of independent WaveLogic 3 (WL3) transmitters combine with the WL3 device under test (DUT). The 9 HD-WDM channels combine with 51 channels from a WL3 based bulk modulator and then propagate through 76 amplified fiber spans. Optical ASE noise is loaded at the receiver where a 400 GHz optical filter selects the region of the spectrum around the DUT test channel. A coherent receiver and real time oscilloscope are used to capture the received waveform.
Fig. 4
Fig. 4 The measured NSM (a) and Q-factor (b) for PM-BPSK (blue) and X-constellation (green) following 5000 km of HD-WDM propagation.

Tables (1)

Tables Icon

Table 1 The optical field Jones vectors for the two consecutive time slots (Slot-A and Slot-B) that define the 8-dimensional X-constellation symbols, and their corresponding binary symbol labels.*

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ΔNS M max dB = 3 2 ΔSN R b2b dB + 1 2 ΔSN R NL dB
OSNR= B e B o SN R ASE ,
SN R NL (k) (P)= ( P ref P ) 2 SN R NL (k) ( P ref )
1 SN R req (k) = 1 SN R b2b (k) ( P P ref ) 2 1 SN R NL (k) ( P ref ) ,
NS M (k) =SN R ASE ( P ref )( P P ref )[ 1 SN R b2b (k) ( P P ref ) 2 1 SN R NL (k) ( P ref ) ],
NS M max (k) = 2 3 SN R ASE ( P ref ) SN R b2b (k) P fib (k) P ref
P fib (k) = P ref ( 1 3 SN R NL (k) ( P ref ) SN R b2b (k) ) 1/2 .
P fib (x) = ( SN R NL (x) ( P ref ) SN R NL (b) ( P ref ) SN R b2b (b) SN R b2b (x) ) 1/2 P fib (b) .
NS M max (x) NS M max (b) = ( SN R NL (x) ( P ref ) SN R NL (b) ( P ref ) ) 1/2 ( SN R b2b (b) SN R b2b (x) ) 3/2 .
ΔNSM max dB = 1 2 ΔSN R NL dB ( P ref ) 3 2 ΔSN R b2b dB
ΔSN R b2b dB =SN R b2b (x)dB SN R b2b (b)dB
ΔSN R NL dB =SN R NL (x)dB ( P ref )SN R NL (b)dB ( P ref ).

Metrics