Abstract

Discrete Vernier frequency tuning of terahertz quantum cascade lasers is demonstrated using a device comprising a two-section coupled-cavity. The two sections are separated by a narrow air gap, which is milled after device packaging using a focused ion beam. One section of the device (the lasing section) is electrically biased above threshold using a short current pulse, while the other section (the tuning section) is biased below threshold with a wider current pulse to achieve controlled localized electrical heating. The resulting thermally-induced shift in the longitudinal cavity modes of the tuning section is engineered to produce either a controllable blue shift or red shift of the emission frequency. This discrete Vernier frequency tuning far exceeds the tuning achievable from standard ridge lasers, and does not lead to any corresponding change in emitted power. Discrete tuning was observed over bandwidths of 50 and 85 GHz in a pair of devices, each using different design schemes. Interchanging the lasing and tuning sections of the same devices yielded red shifts of 20 and 30 GHz, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice

Iman Kundu, Paul Dean, Alexander Valavanis, Li Chen, Lianhe Li, John E. Cunningham, Edmund H. Linfield, and A. Giles Davies
Opt. Express 25(1) 486-496 (2017)

Discrete mode tuning in terahertz quantum cascade lasers

Subhasish Chakraborty, Owen Marshall, Chen Wei Hsin, Md. Khairuzzaman, Harvey Beere, and David Ritchie
Opt. Express 20(26) B306-B314 (2012)

Terahertz photonic crystal quantum cascade lasers

Hua Zhang, L. Andrea Dunbar, Giacomo Scalari, Romuald Houdré, and Jérôme Faist
Opt. Express 15(25) 16818-16827 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  2. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
    [Crossref]
  3. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  4. A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
    [Crossref]
  5. M. S. Vitiello and A. Tredicucci, “Tunable Emission in THz Quantum Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 1(1), 76–84 (2011).
    [Crossref]
  6. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
    [Crossref]
  7. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
    [Crossref] [PubMed]
  8. S. Chakraborty, O. Marshall, C. W. Hsin, M. Khairuzzaman, H. Beere, and D. Ritchie, “Discrete mode tuning in terahertz quantum cascade lasers,” Opt. Express 20(26), B306–B314 (2012).
    [Crossref] [PubMed]
  9. D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
    [Crossref]
  10. S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
    [Crossref]
  11. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
    [Crossref]
  12. T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J.-H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20(21), 23339–23348 (2012).
    [Crossref] [PubMed]
  13. L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
    [Crossref]
  14. L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part II: Transient analysis,” IEEE J. Quantum Electron. 20(6), 671–682 (1984).
    [Crossref]
  15. S. Höfling, J. Heinrich, J. P. Reithmaier, A. Forchel, J. Seufert, M. Fischer, and J. Koeth, “Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities,” Appl. Phys. Lett. 89(24), 241126 (2006).
    [Crossref]
  16. P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
    [Crossref]
  17. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, Edition II, Wiley Series in Microwave and Optical Engineering (John Wiley & Sons, 2012).
  18. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674–1676 (2004).
    [Crossref]
  19. L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38(25), 1675–1676 (2002).
    [Crossref]
  20. L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett. 41(7), 419–421 (2005).
    [Crossref]
  21. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [Crossref]
  22. Z. Yong-Gang, H. You-Jun, and L. Ai-Zhen, “Transient Thermal Analysis of InAlAs/InGaAs/InP Mid-Infrared Quantum Cascade Lasers,” Chin. Phys. Lett. 20(5), 678–681 (2003).
    [Crossref]
  23. C. A. Evans, D. Indjin, Z. Ikonić, P. Harrison, M. S. Vitiello, V. Spagnolo, and G. Scamarcio, “Thermal modeling of terahertz quantum-cascade lasers: comparison of optical waveguides,” IEEE J. Quantum Electron. 44(7), 680–685 (2008).
    [Crossref]
  24. H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
    [Crossref]
  25. M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89(2), 021111 (2006).
    [Crossref]
  26. M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers,” Appl. Phys. Lett. 92(10), 101116 (2008).
    [Crossref]
  27. R. Sharma, L. Schrottke, M. Wienold, K. Biermann, R. Hey, and H. T. Grahn, “Effect of stimulated emission on the transport characteristics of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 99(15), 151116 (2011).
    [Crossref]

2014 (1)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

2013 (2)

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

2012 (3)

2011 (2)

M. S. Vitiello and A. Tredicucci, “Tunable Emission in THz Quantum Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 1(1), 76–84 (2011).
[Crossref]

R. Sharma, L. Schrottke, M. Wienold, K. Biermann, R. Hey, and H. T. Grahn, “Effect of stimulated emission on the transport characteristics of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 99(15), 151116 (2011).
[Crossref]

2010 (1)

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

2009 (2)

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[Crossref]

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

2008 (3)

C. A. Evans, D. Indjin, Z. Ikonić, P. Harrison, M. S. Vitiello, V. Spagnolo, and G. Scamarcio, “Thermal modeling of terahertz quantum-cascade lasers: comparison of optical waveguides,” IEEE J. Quantum Electron. 44(7), 680–685 (2008).
[Crossref]

M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers,” Appl. Phys. Lett. 92(10), 101116 (2008).
[Crossref]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

2007 (1)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

2006 (2)

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89(2), 021111 (2006).
[Crossref]

S. Höfling, J. Heinrich, J. P. Reithmaier, A. Forchel, J. Seufert, M. Fischer, and J. Koeth, “Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities,” Appl. Phys. Lett. 89(24), 241126 (2006).
[Crossref]

2005 (1)

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett. 41(7), 419–421 (2005).
[Crossref]

2004 (2)

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674–1676 (2004).
[Crossref]

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
[Crossref]

2003 (1)

Z. Yong-Gang, H. You-Jun, and L. Ai-Zhen, “Transient Thermal Analysis of InAlAs/InGaAs/InP Mid-Infrared Quantum Cascade Lasers,” Chin. Phys. Lett. 20(5), 678–681 (2003).
[Crossref]

2002 (3)

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38(25), 1675–1676 (2002).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

1984 (2)

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
[Crossref]

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part II: Transient analysis,” IEEE J. Quantum Electron. 20(6), 671–682 (1984).
[Crossref]

Ai-Zhen, L.

Z. Yong-Gang, H. You-Jun, and L. Ai-Zhen, “Transient Thermal Analysis of InAlAs/InGaAs/InP Mid-Infrared Quantum Cascade Lasers,” Chin. Phys. Lett. 20(5), 678–681 (2003).
[Crossref]

Ajili, L.

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett. 41(7), 419–421 (2005).
[Crossref]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38(25), 1675–1676 (2002).
[Crossref]

Akulova, Y.

Alton, J.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89(2), 021111 (2006).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674–1676 (2004).
[Crossref]

Amanti, M. I.

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

Bai, Y.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

Bandyopadhyay, N.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

Barbieri, S.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89(2), 021111 (2006).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674–1676 (2004).
[Crossref]

Barton, J. S.

Beck, M.

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38(25), 1675–1676 (2002).
[Crossref]

Beere, H.

S. Chakraborty, O. Marshall, C. W. Hsin, M. Khairuzzaman, H. Beere, and D. Ritchie, “Discrete mode tuning in terahertz quantum cascade lasers,” Opt. Express 20(26), B306–B314 (2012).
[Crossref] [PubMed]

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett. 41(7), 419–421 (2005).
[Crossref]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38(25), 1675–1676 (2002).
[Crossref]

Beere, H. E.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89(2), 021111 (2006).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674–1676 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Biermann, K.

R. Sharma, L. Schrottke, M. Wienold, K. Biermann, R. Hey, and H. T. Grahn, “Effect of stimulated emission on the transport characteristics of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 99(15), 151116 (2011).
[Crossref]

Blanchard, R.

Burnett, A. D.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Cao, J. C.

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

Capasso, F.

Castellano, F.

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

Chakraborty, S.

Chen, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Coldren, C. W.

Coldren, L. A.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
[Crossref]

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
[Crossref]

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part II: Transient analysis,” IEEE J. Quantum Electron. 20(6), 671–682 (1984).
[Crossref]

Cunningham, J. E.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Davies, A. G.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[Crossref]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Davies, G.

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett. 41(7), 419–421 (2005).
[Crossref]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38(25), 1675–1676 (2002).
[Crossref]

Dean, P.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[Crossref]

Diehl, L.

Dupuis, R. D.

Evans, C. A.

C. A. Evans, D. Indjin, Z. Ikonić, P. Harrison, M. S. Vitiello, V. Spagnolo, and G. Scamarcio, “Thermal modeling of terahertz quantum-cascade lasers: comparison of optical waveguides,” IEEE J. Quantum Electron. 44(7), 680–685 (2008).
[Crossref]

Faist, J.

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett. 41(7), 419–421 (2005).
[Crossref]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38(25), 1675–1676 (2002).
[Crossref]

Fan, W.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Fischer, M.

S. Höfling, J. Heinrich, J. P. Reithmaier, A. Forchel, J. Seufert, M. Fischer, and J. Koeth, “Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities,” Appl. Phys. Lett. 89(24), 241126 (2006).
[Crossref]

Fish, G. A.

Forchel, A.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

S. Höfling, J. Heinrich, J. P. Reithmaier, A. Forchel, J. Seufert, M. Fischer, and J. Koeth, “Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities,” Appl. Phys. Lett. 89(24), 241126 (2006).
[Crossref]

Fowler, J.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674–1676 (2004).
[Crossref]

Freeman, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Fuchs, P.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

Grahn, H. T.

R. Sharma, L. Schrottke, M. Wienold, K. Biermann, R. Hey, and H. T. Grahn, “Effect of stimulated emission on the transport characteristics of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 99(15), 151116 (2011).
[Crossref]

Guo, X. G.

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

Han, Y. J.

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

Harrison, P.

C. A. Evans, D. Indjin, Z. Ikonić, P. Harrison, M. S. Vitiello, V. Spagnolo, and G. Scamarcio, “Thermal modeling of terahertz quantum-cascade lasers: comparison of optical waveguides,” IEEE J. Quantum Electron. 44(7), 680–685 (2008).
[Crossref]

Heinrich, J.

S. Höfling, J. Heinrich, J. P. Reithmaier, A. Forchel, J. Seufert, M. Fischer, and J. Koeth, “Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities,” Appl. Phys. Lett. 89(24), 241126 (2006).
[Crossref]

Hey, R.

R. Sharma, L. Schrottke, M. Wienold, K. Biermann, R. Hey, and H. T. Grahn, “Effect of stimulated emission on the transport characteristics of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 99(15), 151116 (2011).
[Crossref]

Höfling, S.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

S. Höfling, J. Heinrich, J. P. Reithmaier, A. Forchel, J. Seufert, M. Fischer, and J. Koeth, “Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities,” Appl. Phys. Lett. 89(24), 241126 (2006).
[Crossref]

Hofstetter, D.

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38(25), 1675–1676 (2002).
[Crossref]

Hsin, C. W.

Huang, Y.

Ikonic, Z.

C. A. Evans, D. Indjin, Z. Ikonić, P. Harrison, M. S. Vitiello, V. Spagnolo, and G. Scamarcio, “Thermal modeling of terahertz quantum-cascade lasers: comparison of optical waveguides,” IEEE J. Quantum Electron. 44(7), 680–685 (2008).
[Crossref]

Indjin, D.

C. A. Evans, D. Indjin, Z. Ikonić, P. Harrison, M. S. Vitiello, V. Spagnolo, and G. Scamarcio, “Thermal modeling of terahertz quantum-cascade lasers: comparison of optical waveguides,” IEEE J. Quantum Electron. 44(7), 680–685 (2008).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Johansson, L.

Khairuzzaman, M.

Khanna, S. P.

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[Crossref]

Koch, T. L.

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part II: Transient analysis,” IEEE J. Quantum Electron. 20(6), 671–682 (1984).
[Crossref]

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
[Crossref]

Koeth, J.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

S. Höfling, J. Heinrich, J. P. Reithmaier, A. Forchel, J. Seufert, M. Fischer, and J. Koeth, “Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities,” Appl. Phys. Lett. 89(24), 241126 (2006).
[Crossref]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Li, H.

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

Li, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Linfield, E.

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett. 41(7), 419–421 (2005).
[Crossref]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38(25), 1675–1676 (2002).
[Crossref]

Linfield, E. H.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[Crossref]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674–1676 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Loncar, M.

Lu, Q. Y.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

Mansuripur, T. S.

Marshall, O.

Menzel, S.

Pflügl, C.

Razeghi, M.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

Reithmaier, J. P.

S. Höfling, J. Heinrich, J. P. Reithmaier, A. Forchel, J. Seufert, M. Fischer, and J. Koeth, “Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities,” Appl. Phys. Lett. 89(24), 241126 (2006).
[Crossref]

Ritchie, D.

S. Chakraborty, O. Marshall, C. W. Hsin, M. Khairuzzaman, H. Beere, and D. Ritchie, “Discrete mode tuning in terahertz quantum cascade lasers,” Opt. Express 20(26), B306–B314 (2012).
[Crossref] [PubMed]

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett. 41(7), 419–421 (2005).
[Crossref]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38(25), 1675–1676 (2002).
[Crossref]

Ritchie, D. A.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89(2), 021111 (2006).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674–1676 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Ryou, J.-H.

Salih, M.

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[Crossref]

Scalari, G.

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38(25), 1675–1676 (2002).
[Crossref]

Scamarcio, G.

M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers,” Appl. Phys. Lett. 92(10), 101116 (2008).
[Crossref]

C. A. Evans, D. Indjin, Z. Ikonić, P. Harrison, M. S. Vitiello, V. Spagnolo, and G. Scamarcio, “Thermal modeling of terahertz quantum-cascade lasers: comparison of optical waveguides,” IEEE J. Quantum Electron. 44(7), 680–685 (2008).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89(2), 021111 (2006).
[Crossref]

Schrottke, L.

R. Sharma, L. Schrottke, M. Wienold, K. Biermann, R. Hey, and H. T. Grahn, “Effect of stimulated emission on the transport characteristics of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 99(15), 151116 (2011).
[Crossref]

Semmel, J.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

Seufert, J.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

S. Höfling, J. Heinrich, J. P. Reithmaier, A. Forchel, J. Seufert, M. Fischer, and J. Koeth, “Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities,” Appl. Phys. Lett. 89(24), 241126 (2006).
[Crossref]

Sharma, R.

R. Sharma, L. Schrottke, M. Wienold, K. Biermann, R. Hey, and H. T. Grahn, “Effect of stimulated emission on the transport characteristics of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 99(15), 151116 (2011).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Sirtori, C.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89(2), 021111 (2006).
[Crossref]

Slivken, S.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21(1), 968–973 (2013).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

Spagnolo, V.

M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers,” Appl. Phys. Lett. 92(10), 101116 (2008).
[Crossref]

C. A. Evans, D. Indjin, Z. Ikonić, P. Harrison, M. S. Vitiello, V. Spagnolo, and G. Scamarcio, “Thermal modeling of terahertz quantum-cascade lasers: comparison of optical waveguides,” IEEE J. Quantum Electron. 44(7), 680–685 (2008).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89(2), 021111 (2006).
[Crossref]

Tan, Z. Y.

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

Tredicucci, A.

M. S. Vitiello and A. Tredicucci, “Tunable Emission in THz Quantum Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 1(1), 76–84 (2011).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Turcinková, D.

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

Valavanis, A.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Vitiello, M. S.

M. S. Vitiello and A. Tredicucci, “Tunable Emission in THz Quantum Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 1(1), 76–84 (2011).
[Crossref]

M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers,” Appl. Phys. Lett. 92(10), 101116 (2008).
[Crossref]

C. A. Evans, D. Indjin, Z. Ikonić, P. Harrison, M. S. Vitiello, V. Spagnolo, and G. Scamarcio, “Thermal modeling of terahertz quantum-cascade lasers: comparison of optical waveguides,” IEEE J. Quantum Electron. 44(7), 680–685 (2008).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89(2), 021111 (2006).
[Crossref]

Wienold, M.

R. Sharma, L. Schrottke, M. Wienold, K. Biermann, R. Hey, and H. T. Grahn, “Effect of stimulated emission on the transport characteristics of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 99(15), 151116 (2011).
[Crossref]

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Worrall, C.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89(2), 021111 (2006).
[Crossref]

Worschech, L.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

Yong-Gang, Z.

Z. Yong-Gang, H. You-Jun, and L. Ai-Zhen, “Transient Thermal Analysis of InAlAs/InGaAs/InP Mid-Infrared Quantum Cascade Lasers,” Chin. Phys. Lett. 20(5), 678–681 (2003).
[Crossref]

You-Jun, H.

Z. Yong-Gang, H. You-Jun, and L. Ai-Zhen, “Transient Thermal Analysis of InAlAs/InGaAs/InP Mid-Infrared Quantum Cascade Lasers,” Chin. Phys. Lett. 20(5), 678–681 (2003).
[Crossref]

Zhu, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Appl. Phys. Lett. (9)

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett. 95(18), 181101 (2009).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett. 101(25), 251121 (2012).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674–1676 (2004).
[Crossref]

S. Höfling, J. Heinrich, J. P. Reithmaier, A. Forchel, J. Seufert, M. Fischer, and J. Koeth, “Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities,” Appl. Phys. Lett. 89(24), 241126 (2006).
[Crossref]

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, and C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89(2), 021111 (2006).
[Crossref]

M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers,” Appl. Phys. Lett. 92(10), 101116 (2008).
[Crossref]

R. Sharma, L. Schrottke, M. Wienold, K. Biermann, R. Hey, and H. T. Grahn, “Effect of stimulated emission on the transport characteristics of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 99(15), 151116 (2011).
[Crossref]

Chin. Phys. Lett. (1)

Z. Yong-Gang, H. You-Jun, and L. Ai-Zhen, “Transient Thermal Analysis of InAlAs/InGaAs/InP Mid-Infrared Quantum Cascade Lasers,” Chin. Phys. Lett. 20(5), 678–681 (2003).
[Crossref]

Electron. Lett. (3)

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38(25), 1675–1676 (2002).
[Crossref]

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett. 41(7), 419–421 (2005).
[Crossref]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

IEEE J. Quantum Electron. (3)

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part I: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20(6), 659–670 (1984).
[Crossref]

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers - Part II: Transient analysis,” IEEE J. Quantum Electron. 20(6), 671–682 (1984).
[Crossref]

C. A. Evans, D. Indjin, Z. Ikonić, P. Harrison, M. S. Vitiello, V. Spagnolo, and G. Scamarcio, “Thermal modeling of terahertz quantum-cascade lasers: comparison of optical waveguides,” IEEE J. Quantum Electron. 44(7), 680–685 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

M. S. Vitiello and A. Tredicucci, “Tunable Emission in THz Quantum Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 1(1), 76–84 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Appl. Phys. (1)

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

Mater. Today (1)

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Nat. Photonics (1)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Other (1)

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, Edition II, Wiley Series in Microwave and Optical Engineering (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Illustration of a coupled cavity device. A long laser ridge has been etched post-packaging using FIB milling. The two laser sections are separately biased enabling independent electrical control of the sections. (b) Simulated normalized transmission in the lasing section (blue) and in the tuning and air gap sections (red) of the device. The length of each section is selected such that the longitudinal modes coincide at a resonant frequency of 2.745 THz (bottom panel). Illustration of the shift in the resonant frequency as the refractive index of the tuning section is perturbed (middle and top panel). The dominant mode of the coupled cavity, indicated by a black arrow in each case, shifts to a higher frequency.
Fig. 2
Fig. 2 Normalized spectra exhibiting multiple Fabry–Pérot modes obtained from a reference device at a laser drive current of 1.96 A. Red shifting of the modes by about 4 GHz is observed as the heat-sink temperature is increased from 7 K to 70 K.
Fig. 3
Fig. 3 (a) Schematic of the model of a generic coupled-cavity geometry used to simulate transmission characteristics. Two FP etalons of lengths L1 and L2 are separated by an air gap of length Lg. The refractive indices n1 and n2 depend on Joule heating in the respective section. To maintain design flexibility, the front and rear sections were modeled as lasing or tuning sections interchangeably. The emitted field was computed as that transmitted through the facet marked with an arrow. The amplitude reflection coefficient of each interface is denoted as r1r4. (b) Cross-sectional profile of the optical mode (in-plane with the facet), simulated using finite element modeling. The penetration of the waveguide mode into the substrate is typical for THz QCLs with single-plasmon waveguides [21].
Fig. 4
Fig. 4 Simulated transmission spectra of coupled-cavity devices as a function of heat-induced shift of longitudinal modes in one of the sections only. (a, c) Blue shifts induced by heating the shorter sections in designs 1 and 2, respectively. (b, d) Red shifts induced by heating the longer sections in the same devices.
Fig. 5
Fig. 5 (a) Scanning electron microscopy image of a two-section device fabricated from a monolithic 4.8-mm-long ridge cavity etched using focused ion-beam milling. Ceramic pads connected to bond wires surround the device on three sides and radiation is collected from only one of the two facets. (Inset) Air gap separation between the two FP cavities forming the coupled cavity. (b) Schematic diagram of experimental setup.
Fig. 6
Fig. 6 Experimental data (heat sink temperature of 5 K) obtained from device 1, with tuning power applied to the short front section. (a) Spectral evolution and (b) weighted mean of spectral power density (SPD), as a function of the delay between the lasing and tuning pulses, as the former is scanned through the wider tuning pulse. The horizontal line in (b) shows the mean SPD when no current is applied to the tuning section, and serves as a reference. (c) Spectral evolution as tuning power amplitude varies. (d) Weighted mean of the SPD as a function of tuning power. Error bars in the experimental data correspond to weighted standard deviation.
Fig. 7
Fig. 7 (a) Light–current characteristics of the lasing section, acquired at a heat sink temperature of 5 K. (b) Variation of emitted power from lasing section as a function of current in the tuning section.
Fig. 8
Fig. 8 Experimental data (heat sink temperature of 5 K) obtained from Device 1 when the tuning power is applied to the longer rear section. (a) Spectral evolution with applied power at the tuning section. (b) Weighted mean SPD plotted as a function of tuning power. Error bars correspond to weighted standard deviation.
Fig. 9
Fig. 9 Experimental data (heat sink temperature of 5 K) obtained from device 2. (a) Blue shift of spectrum and (b) the mean SPD as a tuning power is applied to the shorter section. (c) Red shift of spectrum and (d) the corresponding mean SPD as a tuning power is applied to the longer section of the same device. Error bars indicate weighted standard deviation of the spectral distribution.

Metrics