Abstract

We numerically and experimentally study a multiwavelength fiber laser (MWFL) employing a nonlinear Brillouin optical loop mirror (NBOLM). Taking into account the impact of stimulated Brillouin scattering (SBS) effect on nonlinear polarization evolution, we present the power transmission equation of Stokes lines from the NBOLM. Thereafter, we combine the power transmission equation, coupled wave equations of SBS process in NBOLM, rate and power propagation equations in the erbium-doped fiber (EDF) to build up a model for the MWFL. Using this model, we can explain the impacts of EDF pump power, input polarization state and quarter-wave-plate angle on the number and amplitude flatness of output Stokes lines. Furthermore, the results from numerical calculations are verified by the experimental measurements.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiwavelength Erbium-doped fiber laser employing nonlinear polarization rotation in a symmetric nonlinear optical loop mirror

Jiajun Tian, Yong Yao, Yunxu Sun, Xuelian Yu, and Deying Chen
Opt. Express 17(17) 15160-15166 (2009)

Multiwavelength erbium-doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF

Xuesong Liu, Li Zhan, Shouyu Luo, Zhaochang Gu, Jinmei Liu, Yuxing Wang, and Qishun Shen
Opt. Express 20(7) 7088-7094 (2012)

Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings

Thi Van Anh Tran, Kwanil Lee, Sang Bae Lee, and Young-Geun Han
Opt. Express 16(3) 1460-1465 (2008)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Zhou, D. Y. Zhou, F. Z. Dong, and N. Q. Ngo, “Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback,” Opt. Lett. 28(11), 893–895 (2003).
    [Crossref] [PubMed]
  2. J. N. Maran, S. L. Rochelle, and P. Besnard, “C-band multi-wavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218(1–3), 81–86 (2003).
    [Crossref]
  3. P. H. Wang, D. M. Weng, K. Li, Y. Liu, X. C. Yu, and X. J. Zhou, “Multi-wavelength Erbium-doped fiber laser based on four-wave-mixing effect in single mode fiber and high nonlinear fiber,” Opt. Express 21(10), 12570–12578 (2013).
    [Crossref] [PubMed]
  4. Z. Q. Luo, M. Zhou, Z. P. Cai, C. C. Ye, J. Weng, G. Huang, and H. Xu, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23(8), 501–503 (2011).
    [Crossref]
  5. J. J. Tian, Y. Yao, Y. X. Sun, X. L. Yu, and D. Y. Chen, “Multiwavelength Erbium-doped fiber laser employing nonlinear polarization rotation in a symmetric nonlinear optical loop mirror,” Opt. Express 17(17), 15160–15166 (2009).
    [Crossref] [PubMed]
  6. X. S. Liu, L. Zhan, S. Y. Luo, Z. C. Gu, J. M. Liu, Y. X. Wang, and Q. S. Shen, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF,” Opt. Express 20(7), 7088–7094 (2012).
    [Crossref] [PubMed]
  7. T. V. A. Tran, K. Lee, S. B. Lee, and Y. G. Han, “Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings,” Opt. Express 16(3), 1460–1465 (2008).
    [Crossref] [PubMed]
  8. X. H. Feng, H. Y. Tam, H. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
    [Crossref]
  9. Z. X. Zhang, L. Zhan, K. Xu, J. Wu, Y. X. Xia, and J. T. Lin, “Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter,” Opt. Lett. 33(4), 324–326 (2008).
    [Crossref] [PubMed]
  10. H. Lin, “Waveband-tunable multiwavelength erbium-doped fiber laser,” Appl. Opt. 49(14), 2653–2657 (2010).
    [Crossref]
  11. Z. Chen, S. Ma, and N. K. Dutta, “Multiwavelength fiber ring laser based on a semiconductor and fiber gain medium,” Opt. Express 17(3), 1234–1239 (2009).
    [Crossref] [PubMed]
  12. J. Yao, J. P. Yao, Z. C. Deng, and J. Liu, “Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity,” J. Lightwave Technol. 23(8), 2484–2490 (2009).
  13. Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Development of a multiwavelength Raman fiber laser based on phase-shifted fiber Bragg gratings for long-distance remote-sensing applications,” Opt. Lett. 30(10), 1114–1116 (2005).
    [Crossref] [PubMed]
  14. Z. Q. Luo, Z. P. Cai, J. F. Huang, C. C. Ye, C. H. Huang, H. Y. Xu, and W. D. Zhong, “Stable and spacing-adjustable multiwavelength Raman fiber laser based on mixed-cascaded phosphosilicate fiber Raman linear cavity,” Opt. Lett. 33(14), 1602–1604 (2008).
    [Crossref] [PubMed]
  15. T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, E. Li, and B. J. Eggleton, “Multi-wavelength gratings formed via cascaded stimulated Brillouin scattering,” Opt. Express 20(24), 26434–26440 (2012).
    [Crossref] [PubMed]
  16. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
    [Crossref]
  17. Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express 19(3), 1699–1706 (2011).
    [Crossref] [PubMed]
  18. Z. A. Rahman, S. Hitam, M. H. Al-Mansoori, A. F. Abas, and M. A. Mahdi, “Multiwavelength Brillouin fiber laser with enhanced reverse-S-shaped feedback coupling assisted by out-of-cavity optical amplifier,” Opt. Express 19(22), 21238–21245 (2011).
    [Crossref] [PubMed]
  19. Y. J. Song, L. Zhan, J. H. Ji, Y. Su, Q. H. Ye, and Y. X. Xia, “Self-seeded multiwavelength Brillouin-erbium fiber laser,” Opt. Lett. 30(5), 486–488 (2005).
    [Crossref] [PubMed]
  20. Y. J. Yuan, Y. Yao, J. J. Xiao, Y. F. Yang, J. J. Tian, and C. Liu, “Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser,” J. Appl. Phys. 115(4), 043102 (2014).
    [Crossref]
  21. D. Stepanov and G. Cowle, “Modeling of multi-line Brillouin/erbium fiber lasers,” Opt. Quantum Electron. 31(5/7), 481–494 (1999).
    [Crossref]
  22. H. A. Al-Asadi, M. H. Abu Bakar, M. H. Al-Mansoori, F. R. Adikan, and M. A. Mahdi, “Analytical analysis of second-order Stokes wave in Brillouin ring fiber laser,” Opt. Express 19(25), 25741–25748 (2011).
    [Crossref] [PubMed]
  23. E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, “Theory of nonlinear loop mirrors with twisted low-birefringence fiber,” J. Opt. Soc. Am. B 18(7), 919–925 (2001).
    [Crossref]
  24. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. M. Martínez, “Theoretical investigation of the NOLM with highly twisted fibre and aλ/4,” Opt. Commun. 254(1–3), 152–167 (2005).
    [Crossref]
  25. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  26. X. C. Xu, Y. Yao, and D. Y. Chen, “Numerical analysis of multiwavelength erbium-doped fiber ring laser exploiting four-wave mixing,” Opt. Express 16(16), 12397–12402 (2008).
    [Crossref] [PubMed]
  27. M. H. Al-Mansoori and M. A. Mahdi, “Reduction of gain depletion and saturation on a Brillouin-erbium fiber laser utilizing a Brillouin pump preamplification technique,” Appl. Opt. 48(18), 3424–3428 (2009).
    [Crossref] [PubMed]

2014 (1)

Y. J. Yuan, Y. Yao, J. J. Xiao, Y. F. Yang, J. J. Tian, and C. Liu, “Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser,” J. Appl. Phys. 115(4), 043102 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (4)

2010 (1)

2009 (5)

2008 (4)

2006 (1)

X. H. Feng, H. Y. Tam, H. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[Crossref]

2005 (3)

2003 (2)

K. J. Zhou, D. Y. Zhou, F. Z. Dong, and N. Q. Ngo, “Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback,” Opt. Lett. 28(11), 893–895 (2003).
[Crossref] [PubMed]

J. N. Maran, S. L. Rochelle, and P. Besnard, “C-band multi-wavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218(1–3), 81–86 (2003).
[Crossref]

2001 (1)

1999 (1)

D. Stepanov and G. Cowle, “Modeling of multi-line Brillouin/erbium fiber lasers,” Opt. Quantum Electron. 31(5/7), 481–494 (1999).
[Crossref]

Abas, A. F.

Abu Bakar, M. H.

Adikan, F. R.

Al-Asadi, H. A.

Al-Mansoori, M. H.

Besnard, P.

J. N. Maran, S. L. Rochelle, and P. Besnard, “C-band multi-wavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218(1–3), 81–86 (2003).
[Crossref]

Büttner, T. F. S.

Cai, Z. P.

Z. Q. Luo, M. Zhou, Z. P. Cai, C. C. Ye, J. Weng, G. Huang, and H. Xu, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23(8), 501–503 (2011).
[Crossref]

Z. Q. Luo, Z. P. Cai, J. F. Huang, C. C. Ye, C. H. Huang, H. Y. Xu, and W. D. Zhong, “Stable and spacing-adjustable multiwavelength Raman fiber laser based on mixed-cascaded phosphosilicate fiber Raman linear cavity,” Opt. Lett. 33(14), 1602–1604 (2008).
[Crossref] [PubMed]

Chen, D. Y.

Chen, Z.

Cowle, G.

D. Stepanov and G. Cowle, “Modeling of multi-line Brillouin/erbium fiber lasers,” Opt. Quantum Electron. 31(5/7), 481–494 (1999).
[Crossref]

Deng, Z. C.

Dong, F. Z.

Dutta, N. K.

Eggleton, B. J.

Feng, X. H.

X. H. Feng, H. Y. Tam, H. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[Crossref]

Gu, Z. C.

Han, Y. G.

Haus, J. W.

Hitam, S.

Huang, C. H.

Huang, G.

Z. Q. Luo, M. Zhou, Z. P. Cai, C. C. Ye, J. Weng, G. Huang, and H. Xu, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23(8), 501–503 (2011).
[Crossref]

Huang, J. F.

Hudson, D. D.

Ibarra-Escamilla, B.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. M. Martínez, “Theoretical investigation of the NOLM with highly twisted fibre and aλ/4,” Opt. Commun. 254(1–3), 152–167 (2005).
[Crossref]

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, “Theory of nonlinear loop mirrors with twisted low-birefringence fiber,” J. Opt. Soc. Am. B 18(7), 919–925 (2001).
[Crossref]

Ismail, A.

Ji, J. H.

Kabakova, I. V.

Kim, S. H.

Korneev, N.

Kuzin, E. A.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. M. Martínez, “Theoretical investigation of the NOLM with highly twisted fibre and aλ/4,” Opt. Commun. 254(1–3), 152–167 (2005).
[Crossref]

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, “Theory of nonlinear loop mirrors with twisted low-birefringence fiber,” J. Opt. Soc. Am. B 18(7), 919–925 (2001).
[Crossref]

Lee, K.

Lee, S. B.

Li, E.

Li, K.

Lin, H.

Lin, J. T.

Liu, C.

Y. J. Yuan, Y. Yao, J. J. Xiao, Y. F. Yang, J. J. Tian, and C. Liu, “Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser,” J. Appl. Phys. 115(4), 043102 (2014).
[Crossref]

Liu, H.

X. H. Feng, H. Y. Tam, H. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[Crossref]

Liu, J.

Liu, J. M.

Liu, X. S.

Liu, Y.

Luo, S. Y.

Luo, Z. Q.

Z. Q. Luo, M. Zhou, Z. P. Cai, C. C. Ye, J. Weng, G. Huang, and H. Xu, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23(8), 501–503 (2011).
[Crossref]

Z. Q. Luo, Z. P. Cai, J. F. Huang, C. C. Ye, C. H. Huang, H. Y. Xu, and W. D. Zhong, “Stable and spacing-adjustable multiwavelength Raman fiber laser based on mixed-cascaded phosphosilicate fiber Raman linear cavity,” Opt. Lett. 33(14), 1602–1604 (2008).
[Crossref] [PubMed]

Ma, S.

Mahdi, M. A.

Maran, J. N.

J. N. Maran, S. L. Rochelle, and P. Besnard, “C-band multi-wavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218(1–3), 81–86 (2003).
[Crossref]

Martínez, F. M.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. M. Martínez, “Theoretical investigation of the NOLM with highly twisted fibre and aλ/4,” Opt. Commun. 254(1–3), 152–167 (2005).
[Crossref]

Ngo, N. Q.

Pant, R.

Pottiez, O.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. M. Martínez, “Theoretical investigation of the NOLM with highly twisted fibre and aλ/4,” Opt. Commun. 254(1–3), 152–167 (2005).
[Crossref]

Rahman, Z. A.

Rochelle, S. L.

J. N. Maran, S. L. Rochelle, and P. Besnard, “C-band multi-wavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218(1–3), 81–86 (2003).
[Crossref]

Shee, Y. G.

Shen, Q. S.

Song, Y. J.

Stepanov, D.

D. Stepanov and G. Cowle, “Modeling of multi-line Brillouin/erbium fiber lasers,” Opt. Quantum Electron. 31(5/7), 481–494 (1999).
[Crossref]

Su, Y.

Sun, Y. X.

Tam, H. Y.

X. H. Feng, H. Y. Tam, H. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[Crossref]

Tian, J. J.

Y. J. Yuan, Y. Yao, J. J. Xiao, Y. F. Yang, J. J. Tian, and C. Liu, “Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser,” J. Appl. Phys. 115(4), 043102 (2014).
[Crossref]

J. J. Tian, Y. Yao, Y. X. Sun, X. L. Yu, and D. Y. Chen, “Multiwavelength Erbium-doped fiber laser employing nonlinear polarization rotation in a symmetric nonlinear optical loop mirror,” Opt. Express 17(17), 15160–15166 (2009).
[Crossref] [PubMed]

Tran, T. V. A.

Wai, P. K. A.

X. H. Feng, H. Y. Tam, H. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[Crossref]

Wang, P. H.

Wang, Y. X.

Weng, D. M.

Weng, J.

Z. Q. Luo, M. Zhou, Z. P. Cai, C. C. Ye, J. Weng, G. Huang, and H. Xu, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23(8), 501–503 (2011).
[Crossref]

Wu, J.

Xia, Y. X.

Xiao, J. J.

Y. J. Yuan, Y. Yao, J. J. Xiao, Y. F. Yang, J. J. Tian, and C. Liu, “Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser,” J. Appl. Phys. 115(4), 043102 (2014).
[Crossref]

Xu, H.

Z. Q. Luo, M. Zhou, Z. P. Cai, C. C. Ye, J. Weng, G. Huang, and H. Xu, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23(8), 501–503 (2011).
[Crossref]

Xu, H. Y.

Xu, K.

Xu, X. C.

Yang, Y. F.

Y. J. Yuan, Y. Yao, J. J. Xiao, Y. F. Yang, J. J. Tian, and C. Liu, “Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser,” J. Appl. Phys. 115(4), 043102 (2014).
[Crossref]

Yao, J.

Yao, J. P.

Yao, Y.

Ye, C. C.

Z. Q. Luo, M. Zhou, Z. P. Cai, C. C. Ye, J. Weng, G. Huang, and H. Xu, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23(8), 501–503 (2011).
[Crossref]

Z. Q. Luo, Z. P. Cai, J. F. Huang, C. C. Ye, C. H. Huang, H. Y. Xu, and W. D. Zhong, “Stable and spacing-adjustable multiwavelength Raman fiber laser based on mixed-cascaded phosphosilicate fiber Raman linear cavity,” Opt. Lett. 33(14), 1602–1604 (2008).
[Crossref] [PubMed]

Ye, Q. H.

Yu, X. C.

Yu, X. L.

Yuan, Y. J.

Y. J. Yuan, Y. Yao, J. J. Xiao, Y. F. Yang, J. J. Tian, and C. Liu, “Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser,” J. Appl. Phys. 115(4), 043102 (2014).
[Crossref]

Zhan, L.

Zhang, Z. X.

Zhong, W. D.

Zhou, D. Y.

Zhou, K. J.

Zhou, M.

Z. Q. Luo, M. Zhou, Z. P. Cai, C. C. Ye, J. Weng, G. Huang, and H. Xu, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23(8), 501–503 (2011).
[Crossref]

Zhou, X. J.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

Z. Q. Luo, M. Zhou, Z. P. Cai, C. C. Ye, J. Weng, G. Huang, and H. Xu, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23(8), 501–503 (2011).
[Crossref]

J. Appl. Phys. (1)

Y. J. Yuan, Y. Yao, J. J. Xiao, Y. F. Yang, J. J. Tian, and C. Liu, “Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser,” J. Appl. Phys. 115(4), 043102 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. M. Martínez, “Theoretical investigation of the NOLM with highly twisted fibre and aλ/4,” Opt. Commun. 254(1–3), 152–167 (2005).
[Crossref]

J. N. Maran, S. L. Rochelle, and P. Besnard, “C-band multi-wavelength frequency-shifted erbium-doped fiber laser,” Opt. Commun. 218(1–3), 81–86 (2003).
[Crossref]

X. H. Feng, H. Y. Tam, H. Liu, and P. K. A. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268(2), 278–281 (2006).
[Crossref]

Opt. Express (10)

P. H. Wang, D. M. Weng, K. Li, Y. Liu, X. C. Yu, and X. J. Zhou, “Multi-wavelength Erbium-doped fiber laser based on four-wave-mixing effect in single mode fiber and high nonlinear fiber,” Opt. Express 21(10), 12570–12578 (2013).
[Crossref] [PubMed]

J. J. Tian, Y. Yao, Y. X. Sun, X. L. Yu, and D. Y. Chen, “Multiwavelength Erbium-doped fiber laser employing nonlinear polarization rotation in a symmetric nonlinear optical loop mirror,” Opt. Express 17(17), 15160–15166 (2009).
[Crossref] [PubMed]

X. S. Liu, L. Zhan, S. Y. Luo, Z. C. Gu, J. M. Liu, Y. X. Wang, and Q. S. Shen, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF,” Opt. Express 20(7), 7088–7094 (2012).
[Crossref] [PubMed]

T. V. A. Tran, K. Lee, S. B. Lee, and Y. G. Han, “Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings,” Opt. Express 16(3), 1460–1465 (2008).
[Crossref] [PubMed]

Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express 19(3), 1699–1706 (2011).
[Crossref] [PubMed]

Z. A. Rahman, S. Hitam, M. H. Al-Mansoori, A. F. Abas, and M. A. Mahdi, “Multiwavelength Brillouin fiber laser with enhanced reverse-S-shaped feedback coupling assisted by out-of-cavity optical amplifier,” Opt. Express 19(22), 21238–21245 (2011).
[Crossref] [PubMed]

Z. Chen, S. Ma, and N. K. Dutta, “Multiwavelength fiber ring laser based on a semiconductor and fiber gain medium,” Opt. Express 17(3), 1234–1239 (2009).
[Crossref] [PubMed]

H. A. Al-Asadi, M. H. Abu Bakar, M. H. Al-Mansoori, F. R. Adikan, and M. A. Mahdi, “Analytical analysis of second-order Stokes wave in Brillouin ring fiber laser,” Opt. Express 19(25), 25741–25748 (2011).
[Crossref] [PubMed]

X. C. Xu, Y. Yao, and D. Y. Chen, “Numerical analysis of multiwavelength erbium-doped fiber ring laser exploiting four-wave mixing,” Opt. Express 16(16), 12397–12402 (2008).
[Crossref] [PubMed]

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, E. Li, and B. J. Eggleton, “Multi-wavelength gratings formed via cascaded stimulated Brillouin scattering,” Opt. Express 20(24), 26434–26440 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

D. Stepanov and G. Cowle, “Modeling of multi-line Brillouin/erbium fiber lasers,” Opt. Quantum Electron. 31(5/7), 481–494 (1999).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the proposed fiber laser.
Fig. 2
Fig. 2 Operation mechanism scheme of the NBOLM.
Fig. 3
Fig. 3 Numerical simulation spectra for different P EP : (a) P EP =35mW , (b) P EP =126mW , (c) P EP =265mW , (d) P EP =348mW .
Fig. 4
Fig. 4 Calculated reflection of the NBOLM for different A s cw and α : (a) varied A s cw or α , (b) varying A s cw and α simultaneously.
Fig. 5
Fig. 5 Numerical simulation spectra for different A s cw or α : (a) A s cw =0.21,α= 132 o , (b) A s cw =0.18,α= 132 o , (c) A s cw =0.21,α= 129 o , (d) A s cw =0.21,α= 126 o .
Fig. 6
Fig. 6 Numerical simulation spectra for varying A s cw and α simultaneously: (a) α= 119 o , A s cw =0.16 , (b) α= 123 o , A s cw =0.22 .
Fig. 7
Fig. 7 Experimental output spectra for different P EP : (a) P EP =35mW , (b) P EP =126mW , (c) P EP =265mW , (d) P EP =348mW .
Fig. 8
Fig. 8 Experimental output spectra for different A s cw or α : (a) PC state 1 and (b) PC state 2 for α= 132 o , (c) α= 129 o and (d) α= 126 o for unvaried A s cw .
Fig. 9
Fig. 9 Experimental output spectra for varying A s cw and α simultaneously: (a) PC state 1 with α= 122 o , (b) PC state 2 with α= 120 o .
Fig. 10
Fig. 10 Experimental peak power stability of the Stokes lines and Bp.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d P Bp_n cw/ccw (z) dz = g B A eff P Bp_n cw/ccw (z) P S_n cw/ccw (z),
d P S_n cw/ccw (z) dz = g B A eff P Bp_n cw/ccw (z) P S_n cw/ccw (z).
i s S Bp_n cw/ccw+ =[μ 1 2 (3 A S_Bp_n cw/ccw ) P Bp_n cw/ccw (z)] S Bp_n cw/ccw+ ,
i s S Bp_n cw/ccw =[+μ 1 2 (3+ A S_Bp_n cw/ccw ) P Bp_n cw/ccw (z)] S Bp_n cw/ccw ,
F Bp_n ,j cw/ccw = [ e i[μ+ 1 2 (3 A s_Bp_n cw/ccw ) P Bp_n,j cw/ccw ]Δl 0 0 e i[μ+ 1 2 (3+ A s_Bp_n cw/ccw ) P Bp_n,j cw/ccw ]Δl ]
F Bp_n cw/ccw = F Bp_n,1 cw/ccw × F Bp_n,2 cw/ccw ×× F Bp_n,j cw/ccw ×× F Bp_n,t cw/ccw = [ e i[kμ+ 1 2 (3 A S_Bp_n cw/ccw ) j=1 t P Bp_n,j ]Δl 0 0 e i[kμ+ 1 2 (3+ A S_Bp_n cw/ccw ) j=1 t P Bp_n,j ]Δl ]
QW P Bp_n cw/ccw = [ 1+i 2 1i 2 e 2iα/2iα 1i 2 e 2iα/2iα 1+i 2 ]
Θ Bp_n cw/ccw = [ e iθ 0 0 e iθ ]
T Bp_n = 1 2 1 2 cos(β2α 1 2 A s_Bp_n cw j=1 t P Bp_n,j Δl)cos(β2α 1 2 A s_Bp_n ccw j=1 t P Bp_n,j Δl).
P th 21 A eff /( g B L eff ).
P Bp_n m = F EDF × F NBOLM × F Loss × P Bp_n m1 .

Metrics