Abstract

This paper presents an improved wavelength coded time-domain reflectometry based on the 2 × 1 optical switch. In this scheme, in order to improve the signal-noise-ratio (SNR) of the beat signal, the improved system used an optical switch to obtain wavelength-stable, low-noise and narrow optical pulses for probe and reference. Experiments were set up to demonstrate a spatial resolution of 2.5m within a range of 70km and obtain the beat signal with line width narrower than 15MHz within a range of 50km in fiber break detection. A system for wavelength-division-multiplexing passive optical network (WDM-PON) monitoring was also constructed to detect the fiber break of different channels by tuning the current applied on the gating section of the distributed Bragg reflector (DBR) laser.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-service monitoring of 16 port × 32 wavelength bi-directional WDM-PON systems with a tunable, coded optical time domain reflectometry

Jeonghwan Lee, Jonghan Park, Jae Gwang Shim, Hosung Yoon, Jin Hee Kim, Kyoungmin Kim, Jae-Oh Byun, and Namkyoo Park
Opt. Express 15(11) 6874-6882 (2007)

Simplex coded polarization optical time domain reflectometry system

Chaodong Wang, Ruolin Liao, Wenbo Chen, Ming Tang, Songnian Fu, Jianguan Tang, Ciming Zhou, and Deming Liu
Opt. Express 25(5) 5550-5558 (2017)

Extended-range optical time domain–reflectometry system at 1.65??µm based on delayed Raman amplification

Huai H. Kee, Gareth P. Lees, and Trevor P. Newson
Opt. Lett. 23(5) 349-351 (1998)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Rogers, “Polarization-optical time domain reflectometry: A technique for the measurement of field distributions,” Appl. Opt. 20(6), 1060–1074 (1981).
    [Crossref] [PubMed]
  2. M. K. Barnoski and S. M. Jensen, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Appl. Opt. 15(9), 2112–2115 (1976).
    [Crossref] [PubMed]
  3. M. Tateda and T. Horiguchi, “Advances in optical time-domain reflectometry,” J. Lightwave Technol. 7(8), 1217–1224 (1989).
    [Crossref]
  4. N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
    [Crossref]
  5. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express 16(14), 10240–10247 (2008).
    [Crossref] [PubMed]
  6. J. Brendel, “High-resolution photon-counting OTDR for PON testing and monitoring,” in OFC Technical Digest (2008), pp. 945–949.
  7. N. H. Zhu, J. H. Ke, H. G. Zhang, W. Chen, J. G. Liu, L. J. Zhao, and W. Wang, “Wavelength coded optical time-domain reflectometry,” J. Lightwave Technol. 28(6), 972–977 (2010).
    [Crossref]
  8. M. Han, Y. Wang, and A. Wang, “Grating-assisted polarization optical time-domain reflectometry for distributed fiber-optic sensing,” Opt. Lett. 32(14), 2028–2030 (2007).
    [Crossref] [PubMed]
  9. N. Linze, P. Mégret, and M. Wuilpart, “Development of an intrusion sensor based on a polarization-OTDR system,” IEEE Sens. J. 12(10), 3005–3009 (2012).
    [Crossref]
  10. K. N. Choi and H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 15(3), 386–388 (2003).
    [Crossref]
  11. M. Wegmuller, F. Scholder, and N. Gisin, “Photon-counting OTDR for local birefringence and fault analysis in the metro environment,” J. Lightwave Technol. 22(2), 390–400 (2004).
    [Crossref]
  12. G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photo counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance,” J. Mod. Opt. 51, 1381–1398 (2004).
  13. P. Eraerds, M. Legre, J. Zhang, H. Zbinden, and N. J. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol. 28(6), 952–964 (2010).
    [Crossref]
  14. B. F. Levine, C. G. Bethea, and J. C. Campbell, “Room‐temperature 1.3‐μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46(4), 333–335 (1985).
    [Crossref]
  15. M. Legré, R. T. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55mum up-conversion photon-counting module,” Opt. Express 15(13), 8237–8242 (2007).
    [Crossref] [PubMed]
  16. M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
    [Crossref]
  17. Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
    [Crossref]
  18. J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24(1), 5–11 (2006).
    [Crossref]
  19. I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory 36(5), 961–1005 (1990).
    [Crossref]

2012 (1)

N. Linze, P. Mégret, and M. Wuilpart, “Development of an intrusion sensor based on a polarization-OTDR system,” IEEE Sens. J. 12(10), 3005–3009 (2012).
[Crossref]

2010 (2)

2008 (2)

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express 16(14), 10240–10247 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (1)

2004 (2)

M. Wegmuller, F. Scholder, and N. Gisin, “Photon-counting OTDR for local birefringence and fault analysis in the metro environment,” J. Lightwave Technol. 22(2), 390–400 (2004).
[Crossref]

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photo counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

2003 (1)

K. N. Choi and H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 15(3), 386–388 (2003).
[Crossref]

1990 (1)

I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory 36(5), 961–1005 (1990).
[Crossref]

1989 (2)

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

M. Tateda and T. Horiguchi, “Advances in optical time-domain reflectometry,” J. Lightwave Technol. 7(8), 1217–1224 (1989).
[Crossref]

1985 (1)

B. F. Levine, C. G. Bethea, and J. C. Campbell, “Room‐temperature 1.3‐μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46(4), 333–335 (1985).
[Crossref]

1981 (1)

1976 (1)

Bao, X.

Barnoski, M. K.

Bethea, C. G.

B. F. Levine, C. G. Bethea, and J. C. Campbell, “Room‐temperature 1.3‐μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46(4), 333–335 (1985).
[Crossref]

Bolognini, G.

N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
[Crossref]

Buus, J.

Byun, J.-O.

N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
[Crossref]

Campbell, J. C.

B. F. Levine, C. G. Bethea, and J. C. Campbell, “Room‐temperature 1.3‐μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46(4), 333–335 (1985).
[Crossref]

Chen, W.

Choi, K. N.

K. N. Choi and H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 15(3), 386–388 (2003).
[Crossref]

Daubechies, I.

I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory 36(5), 961–1005 (1990).
[Crossref]

Di Pasquale, F.

N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
[Crossref]

Eraerds, P.

Foster, S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Giffard, R. P.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Gisin, N.

Gisin, N. J.

Guinnard, O.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photo counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

Han, M.

Horiguchi, T.

M. Tateda and T. Horiguchi, “Advances in optical time-domain reflectometry,” J. Lightwave Technol. 7(8), 1217–1224 (1989).
[Crossref]

Jensen, S. M.

Ke, J. H.

Kim, J. H.

N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
[Crossref]

Kim, K.

N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
[Crossref]

Lee, D.

N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
[Crossref]

Lee, J.

N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
[Crossref]

Legre, M.

Legré, M.

Levine, B. F.

B. F. Levine, C. G. Bethea, and J. C. Campbell, “Room‐temperature 1.3‐μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46(4), 333–335 (1985).
[Crossref]

Linze, N.

N. Linze, P. Mégret, and M. Wuilpart, “Development of an intrusion sensor based on a polarization-OTDR system,” IEEE Sens. J. 12(10), 3005–3009 (2012).
[Crossref]

Liu, J. G.

Mégret, P.

N. Linze, P. Mégret, and M. Wuilpart, “Development of an intrusion sensor based on a polarization-OTDR system,” IEEE Sens. J. 12(10), 3005–3009 (2012).
[Crossref]

Moberly, D. S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Murphy, E. J.

Nazarathy, M.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Newton, S. A.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Park, J.

N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
[Crossref]

Park, N.

N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
[Crossref]

Ribordy, G.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photo counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

Rogers, A. J.

Scholder, F.

Shim, J. G.

N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
[Crossref]

Sischka, F.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Stucki, D.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photo counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

Tateda, M.

M. Tateda and T. Horiguchi, “Advances in optical time-domain reflectometry,” J. Lightwave Technol. 7(8), 1217–1224 (1989).
[Crossref]

Taylor, H. F.

K. N. Choi and H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 15(3), 386–388 (2003).
[Crossref]

Thew, R. T.

Trutna, W. R.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Wang, A.

Wang, A. B.

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, B. J.

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, W.

Wang, Y.

Wang, Y. C.

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wegmuller, M.

M. Wegmuller, F. Scholder, and N. Gisin, “Photon-counting OTDR for local birefringence and fault analysis in the metro environment,” J. Lightwave Technol. 22(2), 390–400 (2004).
[Crossref]

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photo counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

Wuilpart, M.

N. Linze, P. Mégret, and M. Wuilpart, “Development of an intrusion sensor based on a polarization-OTDR system,” IEEE Sens. J. 12(10), 3005–3009 (2012).
[Crossref]

Yoon, H.

N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
[Crossref]

Zbinden, H.

Zhang, H. G.

Zhang, J.

Zhang, Z.

Zhao, L. J.

Zhu, N. H.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

B. F. Levine, C. G. Bethea, and J. C. Campbell, “Room‐temperature 1.3‐μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46(4), 333–335 (1985).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

K. N. Choi and H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 15(3), 386–388 (2003).
[Crossref]

IEEE Sens. J. (1)

N. Linze, P. Mégret, and M. Wuilpart, “Development of an intrusion sensor based on a polarization-OTDR system,” IEEE Sens. J. 12(10), 3005–3009 (2012).
[Crossref]

IEEE Trans. Inf. Theory (1)

I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory 36(5), 961–1005 (1990).
[Crossref]

J. Lightwave Technol. (6)

J. Mod. Opt. (1)

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photo counting at telecom wavelengths with commercial In-GaAs/InP avalanche photodiodes: Current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

N. Park, J. Lee, J. Park, J. G. Shim, H. Yoon, J. H. Kim, K. Kim, J.-O. Byun, G. Bolognini, D. Lee, and F. Di Pasquale, “Coded optical time domain reflectometry: Principle and applications,” Proc. SPIE 6781, 678129 (2007).
[Crossref]

Other (1)

J. Brendel, “High-resolution photon-counting OTDR for PON testing and monitoring,” in OFC Technical Digest (2008), pp. 945–949.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experiment setup for dynamic characteristic measurement of the DBR laser.
Fig. 2
Fig. 2 Short time Fourier transform result of the beat signal.
Fig. 3
Fig. 3 System architecture (EDFA: erbium-doped fiber amplifier).
Fig. 4
Fig. 4 Operation principle of the system.
Fig. 5
Fig. 5 Results of fiber break detection. (a) Measured power spectrum of the beat signal at the fiber distance of 50km at the corresponding to the FC/PC connector at the end of the fiber. (b) The line width of the beat signal of Fig. 5(a). (c) Measured power spectrum of the beat signal at the fiber distance of 70km at the corresponding to the FC/PC connector at the end of the fiber. (d) Distance resolution of the beat signal at 70km.
Fig. 6
Fig. 6 Architecture of the WDM-PON monitoring system based on wavelength coded OTDR.
Fig. 7
Fig. 7 Results of WDM-PON monitoring. (a) The detection of the fiber break at 15km on Channel 1 of the AWG, the wavelength of the output laser was 1555.745nm. (b) The detection of the fiber break at 16 km on Channel 2 of the AWG, the wavelength of the output laser was 1556.553nm. (c) The detection of the fiber break at 25 km on the COM port. (d) The relationship between the wavelength and the tuning current.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T 0 =2Δt=250μs
T 1 =2nl/c

Metrics