Abstract

This paper investigates an identification method of non-reflective faults based on index distribution of optical fibers. The method identifies not only reflective faults but also non-reflective faults caused by tilted fiber-cut, lateral connector-misalignment, fiber-bend, and temperature variation. We analyze the reason why wavelength dependence of the fiber-bend is opposite to that of the lateral connector-misalignment, and the effect of loss due to temperature variation on OTDR waveforms through simulation and experimental results. This method can be realized by only upgrade of fault-analysis software without the hardware change, it is, therefore, competitive and cost-effective in passive optical networks.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced fault characterization by using a conventional OTDR and DSP techniques

Manuel P. Fernández, Laureano A. Bulus Rossini, Juan Pablo Pascual, and Pablo A. Costanzo Caso
Opt. Express 26(21) 27127-27140 (2018)

Multi-wavelength transmission-reflection analysis for fiber monitoring

Min Cen, Jiajia Chen, Véronique Moeyaert, Patrice Mégret, and Marc Wuilpart
Opt. Express 22(25) 31248-31262 (2014)

Full monitoring for long-reach TWDM passive optical networks

Min Cen, Jiajia Chen, Véronique Moeyaert, Patrice Mégret, and Marc Wuilpart
Opt. Express 24(14) 15782-15797 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Yuksel, V. Moeyaert, M. Wuilpart, and P. Megret, “Optical layer monitoring in passive optical networks (PONs): a review,” in Proceedings of International Conference on Transparent Optical Networks (2008), Vol. 1, pp. 92–98.
    [Crossref]
  2. A. E. Willner and Z. Q. Pan, “Optical characterization, diagnosis, and performance monitoring for PON,” in Passive Optical Networks Principles and Practice (Academic, 2007), Chap. 7, pp. 267–300.
  3. P. J. Urban, A. Getaneh, J. P. von der Weid, G. P. Temporao, G. Vall-llosera, and J. Chen, “Detection of Fiber Faults in Passive Optical Networks,” J. Opt. Commun. Netw. 5(11), 1111–1121 (2013).
    [Crossref]
  4. K. Tsujikawa, M. Takaya, and S. Tomita, “Method for estimating loss over wide wavelength region of fiber cables installed in access networks,” in Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (2010), JThA54.
    [Crossref]
  5. T. Kurashima, M. Tateda, K. Shimizu, T. Horiguchi, and Y. Koyamada, “A high performance OTDR for measuring distributed strain and optical loss,” in Proceedings of European Conference on Optical Communication (1996), Vol. 2, pp. 215–218.
  6. W. Lee, J. C. Lee, S. I. Myong, and S. S. Lee, “Fault-Identification Method Based on Index Distribution of Optical Fibers for Enhanced Optical Link Monitoring,” in Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (2013), NWIJ.4.
    [Crossref]
  7. D. R. Anderson, L. M. Johnson, and F. G. Bell, “Fundamentals of fiber optics,” in Troubleshooting Optical Fiber Networks: Understanding and Using Optical Time Domain Reflectometer (Academic, 2004), Chap. 2, pp. 13–58.
  8. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” J. Quantum Electron. 11(2), 75–83 (1975).
    [Crossref]
  9. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [Crossref] [PubMed]
  10. A. Rostami and S. Makouei, “Temperature dependence analysis of the chromatic dispersion in WII-type zero-dispersion shifted fiber (ZDSF),” Prog. Electromagn. Res. B 7, 209–222 (2008).
    [Crossref]
  11. N. Ferrari, L. Greborio, F. Montalti, P. Regio, and G. Vespasiano, “OTDR characteristics for PON measurements,” in International Wire and Cable Symposium (2008), pp. 27–35.

2013 (2)

2008 (1)

A. Rostami and S. Makouei, “Temperature dependence analysis of the chromatic dispersion in WII-type zero-dispersion shifted fiber (ZDSF),” Prog. Electromagn. Res. B 7, 209–222 (2008).
[Crossref]

1975 (1)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Chen, J.

Dong, L.

Ferrari, N.

N. Ferrari, L. Greborio, F. Montalti, P. Regio, and G. Vespasiano, “OTDR characteristics for PON measurements,” in International Wire and Cable Symposium (2008), pp. 27–35.

Getaneh, A.

Greborio, L.

N. Ferrari, L. Greborio, F. Montalti, P. Regio, and G. Vespasiano, “OTDR characteristics for PON measurements,” in International Wire and Cable Symposium (2008), pp. 27–35.

Harris, J. H.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Heiblum, M.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Horiguchi, T.

T. Kurashima, M. Tateda, K. Shimizu, T. Horiguchi, and Y. Koyamada, “A high performance OTDR for measuring distributed strain and optical loss,” in Proceedings of European Conference on Optical Communication (1996), Vol. 2, pp. 215–218.

Koyamada, Y.

T. Kurashima, M. Tateda, K. Shimizu, T. Horiguchi, and Y. Koyamada, “A high performance OTDR for measuring distributed strain and optical loss,” in Proceedings of European Conference on Optical Communication (1996), Vol. 2, pp. 215–218.

Kurashima, T.

T. Kurashima, M. Tateda, K. Shimizu, T. Horiguchi, and Y. Koyamada, “A high performance OTDR for measuring distributed strain and optical loss,” in Proceedings of European Conference on Optical Communication (1996), Vol. 2, pp. 215–218.

Makouei, S.

A. Rostami and S. Makouei, “Temperature dependence analysis of the chromatic dispersion in WII-type zero-dispersion shifted fiber (ZDSF),” Prog. Electromagn. Res. B 7, 209–222 (2008).
[Crossref]

Megret, P.

K. Yuksel, V. Moeyaert, M. Wuilpart, and P. Megret, “Optical layer monitoring in passive optical networks (PONs): a review,” in Proceedings of International Conference on Transparent Optical Networks (2008), Vol. 1, pp. 92–98.
[Crossref]

Moeyaert, V.

K. Yuksel, V. Moeyaert, M. Wuilpart, and P. Megret, “Optical layer monitoring in passive optical networks (PONs): a review,” in Proceedings of International Conference on Transparent Optical Networks (2008), Vol. 1, pp. 92–98.
[Crossref]

Montalti, F.

N. Ferrari, L. Greborio, F. Montalti, P. Regio, and G. Vespasiano, “OTDR characteristics for PON measurements,” in International Wire and Cable Symposium (2008), pp. 27–35.

Regio, P.

N. Ferrari, L. Greborio, F. Montalti, P. Regio, and G. Vespasiano, “OTDR characteristics for PON measurements,” in International Wire and Cable Symposium (2008), pp. 27–35.

Rostami, A.

A. Rostami and S. Makouei, “Temperature dependence analysis of the chromatic dispersion in WII-type zero-dispersion shifted fiber (ZDSF),” Prog. Electromagn. Res. B 7, 209–222 (2008).
[Crossref]

Shimizu, K.

T. Kurashima, M. Tateda, K. Shimizu, T. Horiguchi, and Y. Koyamada, “A high performance OTDR for measuring distributed strain and optical loss,” in Proceedings of European Conference on Optical Communication (1996), Vol. 2, pp. 215–218.

Tateda, M.

T. Kurashima, M. Tateda, K. Shimizu, T. Horiguchi, and Y. Koyamada, “A high performance OTDR for measuring distributed strain and optical loss,” in Proceedings of European Conference on Optical Communication (1996), Vol. 2, pp. 215–218.

Temporao, G. P.

Urban, P. J.

Vall-llosera, G.

Vespasiano, G.

N. Ferrari, L. Greborio, F. Montalti, P. Regio, and G. Vespasiano, “OTDR characteristics for PON measurements,” in International Wire and Cable Symposium (2008), pp. 27–35.

von der Weid, J. P.

Wuilpart, M.

K. Yuksel, V. Moeyaert, M. Wuilpart, and P. Megret, “Optical layer monitoring in passive optical networks (PONs): a review,” in Proceedings of International Conference on Transparent Optical Networks (2008), Vol. 1, pp. 92–98.
[Crossref]

Yuksel, K.

K. Yuksel, V. Moeyaert, M. Wuilpart, and P. Megret, “Optical layer monitoring in passive optical networks (PONs): a review,” in Proceedings of International Conference on Transparent Optical Networks (2008), Vol. 1, pp. 92–98.
[Crossref]

J. Opt. Commun. Netw. (1)

J. Quantum Electron. (1)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Opt. Express (1)

Prog. Electromagn. Res. B (1)

A. Rostami and S. Makouei, “Temperature dependence analysis of the chromatic dispersion in WII-type zero-dispersion shifted fiber (ZDSF),” Prog. Electromagn. Res. B 7, 209–222 (2008).
[Crossref]

Other (7)

N. Ferrari, L. Greborio, F. Montalti, P. Regio, and G. Vespasiano, “OTDR characteristics for PON measurements,” in International Wire and Cable Symposium (2008), pp. 27–35.

K. Yuksel, V. Moeyaert, M. Wuilpart, and P. Megret, “Optical layer monitoring in passive optical networks (PONs): a review,” in Proceedings of International Conference on Transparent Optical Networks (2008), Vol. 1, pp. 92–98.
[Crossref]

A. E. Willner and Z. Q. Pan, “Optical characterization, diagnosis, and performance monitoring for PON,” in Passive Optical Networks Principles and Practice (Academic, 2007), Chap. 7, pp. 267–300.

K. Tsujikawa, M. Takaya, and S. Tomita, “Method for estimating loss over wide wavelength region of fiber cables installed in access networks,” in Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (2010), JThA54.
[Crossref]

T. Kurashima, M. Tateda, K. Shimizu, T. Horiguchi, and Y. Koyamada, “A high performance OTDR for measuring distributed strain and optical loss,” in Proceedings of European Conference on Optical Communication (1996), Vol. 2, pp. 215–218.

W. Lee, J. C. Lee, S. I. Myong, and S. S. Lee, “Fault-Identification Method Based on Index Distribution of Optical Fibers for Enhanced Optical Link Monitoring,” in Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (2013), NWIJ.4.
[Crossref]

D. R. Anderson, L. M. Johnson, and F. G. Bell, “Fundamentals of fiber optics,” in Troubleshooting Optical Fiber Networks: Understanding and Using Optical Time Domain Reflectometer (Academic, 2004), Chap. 2, pp. 13–58.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Reflective faults: (a) perpendicular fiber-cut, (b) longitudinal connector-misalignment, and (c) OTDR traces of reflective faults.
Fig. 2
Fig. 2 Non-reflective faults: (a) tilted fiber-cut, (b) lateral connector-misalignment, (c) fiber-bend, (d) temperature variation, and (e) OTDR traces of non-reflective faults.
Fig. 3
Fig. 3 Equivalent waveguide structures of curved optical waveguide via the conformal transformation method.
Fig. 4
Fig. 4 Transformation of step index distribution in the curved optical waveguide.
Fig. 5
Fig. 5 Transformed index distribution of the bent fiber and enlarged views of the rising edge.
Fig. 6
Fig. 6 (a) Effect of bend radius on the modified index profile, (b) Effective indices as function of wavelengths in the straight and bent fibers.
Fig. 7
Fig. 7 Experimental setup for measuring the bending loss with bending radius of 1 cm, 1.5 cm, 2 cm, and 3 cm at 1310 nm and 1625 nm using OTDR technique.
Fig. 8
Fig. 8 Experimental results for bending loss with bending radius of 1.5 cm at 1310 nm and 1625 nm.
Fig. 9
Fig. 9 (a) Definition of mode field diameter, (b) Wavelength dependences of MFD.
Fig. 10
Fig. 10 Experimental setup for measuring the connector loss at 1310 nm and 1625 nm using OTDR.
Fig. 11
Fig. 11 Experimental results for connector loss at 1310 nm and 1625 nm.
Fig. 12
Fig. 12 Thermo-optic coefficient versus wavelengths for silica glasses.
Fig. 13
Fig. 13 Experimental setup for measuring the loss due to temperature variations of −20 °C, 20 °C, 60 °C, and 80 °C at 1310 nm and 1625 nm using OTDR.
Fig. 14
Fig. 14 Measured OTDR traces with temperature of −20 °C, 20 °C, 60 °C, and 80 °C at two wavelengths of (a) 1310 nm and (b) 1625 nm.
Fig. 15
Fig. 15 Experimental results for wavelength dependence of (a) bending loss and (b) connector loss.
Fig. 16
Fig. 16 Detailed explanation of the proposed method.

Tables (1)

Tables Icon

Table 1 Comparison between the proposed fault analysis method and conventional method

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ x,y 2 + κ 2 ( x,y ) ]Ψ=0
W=u+iv=f( Z )=f( x+iy )
[ Δ u,v 2 + | dZ dW | 2 κ 2 ( x( u,v ),y( u,v ) ) ]Ψ=0
f( Z )=W= R 2 ln Z R 2
| dZ dW |=exp( u/ R 2 )
α b | 1310nm < α b | 1625nm
α c | 1310nm > α c | 1625nm
2n( dn dT )=GR+H R 2 =G( λ 2 λ 2 λ g 2 )+H ( λ 2 λ 2 λ g 2 ) 2

Metrics