Abstract

A novel digital super-Nyquist signal generation scheme is proposed to further suppress the Nyquist signal bandwidth and reduce the channel crosstalk without using optical pre-filtering. The spectrum of the generated super-Nyquist 9-QAM signal is much more compact compared with regular Nyquist QPSK signal. Therefore, only optical couplers are needed for super-Nyquist WDM channel multiplexing. By using the 64-GSa/s high speed DAC, 32-GBaud super-Nyquist 9-QAM signal is generated within 25-GHz grid for quad-carrier 400G channels. We successfully generate and transmit 4 channels quad-carrier 512-Gb/s super-Nyquist 9-QAM-like signal within 100-GHz grid over 2975-km at a net SE of 4b/s/Hz (after excluding the 20% soft-decision FEC overhead).

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs

Jianjun Yu, Junwen Zhang, Ze Dong, Zhensheng Jia, Hung-Chang Chien, Yi Cai, Xin Xiao, and Xinying Li
Opt. Express 21(13) 15686-15691 (2013)

Heterodyne detection and transmission of 60-Gbaud PDM-QPSK signal with SE of 4b/s/Hz

Xinying Li, Jiangnan Xiao, and Jianjun Yu
Opt. Express 22(8) 9307-9313 (2014)

Experimental demonstration of iterative post-equalization algorithm for 37.5-Gbaud PM-16QAM quad-carrier Terabit superchannel

Zhensheng Jia, Hung-Chang Chien, Yi Cai, Jianjun Yu, Chengliang Zhang, Junjie Li, Yiran Ma, Dongdong Shang, Qi Zhang, Sheping Shi, and Huitao Wang
Opt. Express 23(3) 2157-2162 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “High spectral efficiency 400 Gb/s transmission using PDM time-domain hybrid 32–64 QAM and training-assisted carrier recovery,” J. Lightwave Technol. 31(7), 999–1005 (2013).
    [Crossref]
  2. H. Zhang, J. Cai, H. G. Batshon, M. Mazurczyk, O. Sinkin, D. Foursa, A. Pilipetskii, G. Mohs, and N. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz dpectral efficiency,” in Proc. OFC 2013, paper PDP5A.6.
  3. T. J. Xia, G. Wellbrock, A. Tanaka, M. Huang, E. Ip, D. Qian, Y. Huang, S. Zhang, Y. Zhang, P. Ji, Y. Aono, S. Murakami, and T. Tajima, “High capacity field trials of 40.5 Tb/s for LH distance of 1,822 km and 54.2 Tb/s for regional distance of 634 km,” in Proc. OFC 2013, paper PDP5A.4.
  4. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  5. J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using DSP techniques at transmitter,” in Proc. OFC2012, OM3H.5.
    [Crossref]
  6. O. Bertran-Pardo, J. Renaudier, P. Tran, H. Mardoyan, P. Brindel, A. Ghazisaeidi, M. T. Salsi, G. Charlet, and S. Bigo, “Submarine transmissions with spectral efficiency higher than 3 b/s/Hz using Nyquist pulse-shaped channels,” in Proc. OFC 2013, OTu2B.1.
    [Crossref]
  7. Q. Juan, B. Mao, N. Gonzalez, N. Binh, and N. Stojanovic, “Generation of 28GBaud and 32GBaud PDM-Nyquist-QPSK by a DAC with 11.3GHz analog bandwidth,” in Proc. OFC 2013, OTh1F.1.
    [Crossref]
  8. J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters,” J. Lightwave Technol. 30(23), 3679–3686 (2012).
    [Crossref]
  9. J.-X. Cai, “100G Transmission Over Transoceanic Distance With High Spectral Efficiency and Large Capacity,” J. Lightwave Technol. 30(24), 3845–3856 (2012).
    [Crossref]
  10. J. Yu, J. Zhang, Z. Dong, Z. Jia, H.-C. Chien, Y. Cai, X. Xiao, and X. Li, “Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs,” Opt. Express 21(13), 15686–15691 (2013).
    [Crossref] [PubMed]
  11. H.-C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “512-Gb/s quad-carrier PM-QPSK transmission over 2400-km SMF-28 subject to narrowing 100-GHz optical bandwidth,” in Proc. ECOC 2012, paper Th.2.C.4.
    [Crossref]
  12. J. Zhang, J. Yu, N. Chi, Z. Dong, J. Yu, X. Li, L. Tao, and Y. Shao, “Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing,” J. Lightwave Technol. 31(7), 1073–1078 (2013).
    [Crossref]
  13. J. Zhang, B. Huang, and X. Li, “Improved quadrature duobinary system performance using multi-modulus equalization,” Photonic Technology Letters 25(16), 1630–1633 (2013).
    [Crossref]
  14. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol. 30(11), 1664–1676 (2012).
    [Crossref]
  15. Z. Jia, J. Yu, H. Chien, Z. Dong, and D. Huo, “Field transmission of 100 G and beyond: multiple baud rates and mixed line rates using Nyquist-WDM technology,” J. Lightwave Technol. 30(24), 3793–3804 (2012).
    [Crossref]
  16. M. Yan, Z. Tao, L. Dou, L. Li, Y. Zhao, T. Hoshida, and J. C. Rasmussen, “Digital clock recovery algorithm for Nyquist signal,” in Proc. OFC 2013, paper OTu2I.7.
    [Crossref]
  17. Y. Lu, Y. Fang, B. Wu, K. Wang, W. Wan, F. Yu, L. Li, X. Shi, and Q. Xiong, “Experimental comparison of 32-Gbaud electrical-OFDM and Nyquist-WDM transmission with 64GSa/s DAC”, in Proc. ECOC 2013, paper We.1.C.3.
  18. J. Qi, B. Mao, N. Gonzalez, L. N. Binh, and N. Stojanovic, “Generation of 28GBaud and 32GBaud PDM-Nyquist-QPSK by a DAC with 11.3GHz analog bandwidth,” in Proc. OFC 2013, paper OTh1F.1.

2013 (4)

2012 (4)

2011 (1)

Andrekson, P. A.

Borel, P. I.

Bosco, G.

Cai, J.-X.

Cai, Y.

Carena, A.

Carlson, K.

Chi, N.

Chien, H.

Chien, H.-C.

Curri, V.

Dong, Z.

Eriksson, T.

Forghieri, F.

Huang, B.

J. Zhang, B. Huang, and X. Li, “Improved quadrature duobinary system performance using multi-modulus equalization,” Photonic Technology Letters 25(16), 1630–1633 (2013).
[Crossref]

Huo, D.

Isaac, R.

Jia, Z.

Karlsson, M.

Li, J.

Li, X.

Magill, P.

Nelson, L. E.

Pan, Z.

J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters,” J. Lightwave Technol. 30(23), 3679–3686 (2012).
[Crossref]

J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using DSP techniques at transmitter,” in Proc. OFC2012, OM3H.5.
[Crossref]

Peckham, D. W.

Poggiolini, P.

Shao, Y.

Tao, L.

Tipsuwannakul, E.

Wang, J.

J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters,” J. Lightwave Technol. 30(23), 3679–3686 (2012).
[Crossref]

J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using DSP techniques at transmitter,” in Proc. OFC2012, OM3H.5.
[Crossref]

Xiao, X.

Xie, C.

J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters,” J. Lightwave Technol. 30(23), 3679–3686 (2012).
[Crossref]

J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using DSP techniques at transmitter,” in Proc. OFC2012, OM3H.5.
[Crossref]

Yu, J.

Zhang, J.

Zhou, X.

Zhu, B.

J. Lightwave Technol. (7)

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol. 30(11), 1664–1676 (2012).
[Crossref]

J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters,” J. Lightwave Technol. 30(23), 3679–3686 (2012).
[Crossref]

Z. Jia, J. Yu, H. Chien, Z. Dong, and D. Huo, “Field transmission of 100 G and beyond: multiple baud rates and mixed line rates using Nyquist-WDM technology,” J. Lightwave Technol. 30(24), 3793–3804 (2012).
[Crossref]

J.-X. Cai, “100G Transmission Over Transoceanic Distance With High Spectral Efficiency and Large Capacity,” J. Lightwave Technol. 30(24), 3845–3856 (2012).
[Crossref]

X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “High spectral efficiency 400 Gb/s transmission using PDM time-domain hybrid 32–64 QAM and training-assisted carrier recovery,” J. Lightwave Technol. 31(7), 999–1005 (2013).
[Crossref]

J. Zhang, J. Yu, N. Chi, Z. Dong, J. Yu, X. Li, L. Tao, and Y. Shao, “Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing,” J. Lightwave Technol. 31(7), 1073–1078 (2013).
[Crossref]

Opt. Express (1)

Photonic Technology Letters (1)

J. Zhang, B. Huang, and X. Li, “Improved quadrature duobinary system performance using multi-modulus equalization,” Photonic Technology Letters 25(16), 1630–1633 (2013).
[Crossref]

Other (9)

M. Yan, Z. Tao, L. Dou, L. Li, Y. Zhao, T. Hoshida, and J. C. Rasmussen, “Digital clock recovery algorithm for Nyquist signal,” in Proc. OFC 2013, paper OTu2I.7.
[Crossref]

Y. Lu, Y. Fang, B. Wu, K. Wang, W. Wan, F. Yu, L. Li, X. Shi, and Q. Xiong, “Experimental comparison of 32-Gbaud electrical-OFDM and Nyquist-WDM transmission with 64GSa/s DAC”, in Proc. ECOC 2013, paper We.1.C.3.

J. Qi, B. Mao, N. Gonzalez, L. N. Binh, and N. Stojanovic, “Generation of 28GBaud and 32GBaud PDM-Nyquist-QPSK by a DAC with 11.3GHz analog bandwidth,” in Proc. OFC 2013, paper OTh1F.1.

J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using DSP techniques at transmitter,” in Proc. OFC2012, OM3H.5.
[Crossref]

O. Bertran-Pardo, J. Renaudier, P. Tran, H. Mardoyan, P. Brindel, A. Ghazisaeidi, M. T. Salsi, G. Charlet, and S. Bigo, “Submarine transmissions with spectral efficiency higher than 3 b/s/Hz using Nyquist pulse-shaped channels,” in Proc. OFC 2013, OTu2B.1.
[Crossref]

Q. Juan, B. Mao, N. Gonzalez, N. Binh, and N. Stojanovic, “Generation of 28GBaud and 32GBaud PDM-Nyquist-QPSK by a DAC with 11.3GHz analog bandwidth,” in Proc. OFC 2013, OTh1F.1.
[Crossref]

H. Zhang, J. Cai, H. G. Batshon, M. Mazurczyk, O. Sinkin, D. Foursa, A. Pilipetskii, G. Mohs, and N. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz dpectral efficiency,” in Proc. OFC 2013, paper PDP5A.6.

T. J. Xia, G. Wellbrock, A. Tanaka, M. Huang, E. Ip, D. Qian, Y. Huang, S. Zhang, Y. Zhang, P. Ji, Y. Aono, S. Murakami, and T. Tajima, “High capacity field trials of 40.5 Tb/s for LH distance of 1,822 km and 54.2 Tb/s for regional distance of 634 km,” in Proc. OFC 2013, paper PDP5A.4.

H.-C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “512-Gb/s quad-carrier PM-QPSK transmission over 2400-km SMF-28 subject to narrowing 100-GHz optical bandwidth,” in Proc. ECOC 2012, paper Th.2.C.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The principle of DAC-based Nyquist and super-Nyquist 9-QAM signal generation and the crosstalk impairments in SN-WDM.
Fig. 2
Fig. 2 The impulse response of (a) the Nyquist filter, (d) the super-Nyquist filter; The eye diagrams of the (b) Nyquist QPSK signal and (e) the super-Nyquist 9-QAM signal; The FFT spectrum of the generated (c) Nyquist QPSK signal and (f) super-Nyquist 9-QAM signal.
Fig. 3
Fig. 3 Experimental setup of 4 × 512Gb/s quad-carrier super-Nyquist channels signal generation, transmission and receiving. (MOD: modulator; OC: optical coupler; P-MUX: polarization multiplexing; WSS: wavelength-selective switch; TOF: tunable optical filter).
Fig. 4
Fig. 4 (a)The optical spectrum of single channel 32-Gbaud PDM-QPSK, Nyquist PDM-QPSK, PDM-9QAM and super-Nyquist PDM-9-QAM signal; (b) The back to back optical spectrum of 4 channels quad-carrier super-Nyquist PDM-9QAM with 16 sub-channel.
Fig. 5
Fig. 5 (a) The BTB BER performance of 32-GBaud Nyquist-QPSK, super-Nyquist 9-QAM and 32GBaud 8QAM signals versus OSNR in single channel case and WDM case; (b) The BER of QC-Ch. 2 versus the transmission distance.
Fig. 6
Fig. 6 (a) The BER of sub-ch. 7 v.s. the input power per sub-channel; (b)The BER of all sub-channels and averaged BER of all QC channels after 2975-km transmission.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H QDB (z)=1+ z 1
h SN (t)= h QBD (t) h srrc (t)

Metrics