Abstract

A DBR fiber grating laser acoustic sensor based on polarization beat signal modulation analysis has been demonstrated for directional acoustic signal measurement. The acoustic sensor was fabricated in birefringent erbium-doped fiber, and the influences of external-acoustic pressure on fiber grating laser sensor were analyzed, considering the effect of relative orientation of the acoustic wave on the degrees of birefringence modulation. In experiment, the birefringence in sensing fiber was modulated by ultrasonic pressure. Agreement between theoretical and experimental results was obtained for ultrasound wave propagating from different directions (0-360 degrees in 15 degrees intervals) corresponding to a nonlinearly change in beat frequency modulation rates. The results demonstrate that the DBR fiber grating laser acoustic sensor has an orientation recognizable ability, offering a potential for acoustic vector signal detection.

©2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide bandwidth dual-frequency ultrasound measurements based on fiber laser sensing technology

Chengang Lyu, Ying Liu, and Chuang Wu
Appl. Opt. 55(19) 5057-5062 (2016)

Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection

Tuan Guo, Allan C. L. Wong, Wei-Sheng Liu, Bai-Ou Guan, Chao Lu, and Hwa-Yaw Tam
Opt. Express 19(3) 2485-2492 (2011)

Polarimetric fiber laser sensor for hydrostatic pressure

Klaus Bohnert, Andreas Frank, Etienne Rochat, Karim Haroud, and Hubert Brändle
Appl. Opt. 43(1) 41-48 (2004)

References

  • View by:
  • |
  • |
  • |

  1. B. Dunmire, K. W. Beach, K. H. Labs, M. Plett, and D. E. Strandness., “Cross-beam vector Doppler ultrasound for angle-independent velocity measurements,” Ultrasound Med. Biol. 26(8), 1213–1235 (2000).
    [Crossref] [PubMed]
  2. T. Harrison, J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, “Combined photoacoustic and ultrasound biomicroscopy,” Opt. Express 17(24), 22041–22046 (2009).
    [Crossref] [PubMed]
  3. H. Sielschott, “Measurement of horizontal flow in a large scale furnace using acoustic vector tomography,” Flow Meas. Instrum. 8(3–4), 191–197 (1997).
  4. Y. I. Wu, K. T. Wong, and S.-K. Lau, “The acoustic vector-sensor's near-field array-manifold,” IEEE. T. Signal Process. 58(7), 3946–3951 (2010).
  5. G. A. Miller, G. A. Cranch, and C. K. Kirkendall, “High-Performance Sensing Using Fiber Lasers,” Opt. Photon. News 23(2), 30–36 (2012).
    [Crossref]
  6. B. Culshaw and A. Kersey, “Fiber-Optic Sensing: A Historical Perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
    [Crossref]
  7. W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber,” Opt. Express 17(19), 16613–16618 (2009).
    [Crossref] [PubMed]
  8. M. Moccia, M. Pisco, A. Cutolo, V. Galdi, P. Bevilacqua, and A. Cusano, “Opto-acoustic behavior of coated fiber Bragg gratings,” Opt. Express 19(20), 18842–18860 (2011).
    [Crossref] [PubMed]
  9. R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11(3), 240–254 (2005).
    [Crossref]
  10. M. Karimi, F. Surre, T. Sun, K. T. V. Grattan, W. Margulis, and P. Fonjallaz, “Directional force measurement using specialized single-mode polarization-maintaining fibers,” J. Lightwave Technol. 29(24), 3611–3615 (2011).
    [Crossref]
  11. H. K. Kim, S. K. Kim, H. G. Park, and B. Y. Kim, “Polarimetric fiber laser sensors,” Opt. Lett. 18(4), 317–319 (1993).
    [Crossref] [PubMed]
  12. H. K. Kim, S. K. Kim, and B. Y. Kim, “Polarization control of polarimetric fiber-laser sensors,” Opt. Lett. 18(17), 1465–1467 (1993).
    [Crossref] [PubMed]
  13. G. A. Ball, G. Meltz, and W. W. Morey, “Polarimetric heterodyning Bragg-grating fiber-laser sensor,” Opt. Lett. 18(22), 1976–1978 (1993).
    [Crossref] [PubMed]
  14. J. T. Kringlebotn, W. H. Loh, and R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21(22), 1869–1871 (1996).
    [Crossref] [PubMed]
  15. K. Bohnert, A. Frank, E. Rochat, K. Haroud, and H. Brändle, “Polarimetric fiber laser sensor for hydrostatic pressure,” Appl. Opt. 43(1), 41–48 (2004).
    [Crossref] [PubMed]
  16. A. Frank, K. Haroud, E. Rochat, K. Bohnert, H. Brandle, and Ieee, “High resolution fiber laser sensor for hydrostatic pressure,” in OFS2002: 15th Optical Fiber Sensors Conference Technical Digest(IEEE, New York, 2002), pp. 359–362.
  17. B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE. Photon. Technol. Lett. 17(1), 169–171 (2005).
    [Crossref]
  18. H. Y. Tam, H. L. W. Chan, and B. O. Guan, “Ultrasound sensor and ultrasound measurement device,” U.S. Patent 7206259 B2 (Apr. 2007).
  19. B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
    [Crossref]

2012 (2)

G. A. Miller, G. A. Cranch, and C. K. Kirkendall, “High-Performance Sensing Using Fiber Lasers,” Opt. Photon. News 23(2), 30–36 (2012).
[Crossref]

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
[Crossref]

2011 (2)

2010 (1)

Y. I. Wu, K. T. Wong, and S.-K. Lau, “The acoustic vector-sensor's near-field array-manifold,” IEEE. T. Signal Process. 58(7), 3946–3951 (2010).

2009 (2)

2008 (1)

2005 (2)

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11(3), 240–254 (2005).
[Crossref]

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE. Photon. Technol. Lett. 17(1), 169–171 (2005).
[Crossref]

2004 (1)

2000 (1)

B. Dunmire, K. W. Beach, K. H. Labs, M. Plett, and D. E. Strandness., “Cross-beam vector Doppler ultrasound for angle-independent velocity measurements,” Ultrasound Med. Biol. 26(8), 1213–1235 (2000).
[Crossref] [PubMed]

1997 (1)

H. Sielschott, “Measurement of horizontal flow in a large scale furnace using acoustic vector tomography,” Flow Meas. Instrum. 8(3–4), 191–197 (1997).

1996 (1)

1993 (3)

Ball, G. A.

Beach, K. W.

B. Dunmire, K. W. Beach, K. H. Labs, M. Plett, and D. E. Strandness., “Cross-beam vector Doppler ultrasound for angle-independent velocity measurements,” Ultrasound Med. Biol. 26(8), 1213–1235 (2000).
[Crossref] [PubMed]

Bevilacqua, P.

Bohnert, K.

Brändle, H.

Chan, H. L. W.

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE. Photon. Technol. Lett. 17(1), 169–171 (2005).
[Crossref]

Chen, J.

Cranch, G. A.

G. A. Miller, G. A. Cranch, and C. K. Kirkendall, “High-Performance Sensing Using Fiber Lasers,” Opt. Photon. News 23(2), 30–36 (2012).
[Crossref]

Culshaw, B.

Cusano, A.

Cutolo, A.

Dunmire, B.

B. Dunmire, K. W. Beach, K. H. Labs, M. Plett, and D. E. Strandness., “Cross-beam vector Doppler ultrasound for angle-independent velocity measurements,” Ultrasound Med. Biol. 26(8), 1213–1235 (2000).
[Crossref] [PubMed]

Fonjallaz, P.

Frank, A.

Galdi, V.

Gan, Z.

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11(3), 240–254 (2005).
[Crossref]

Grattan, K. T. V.

Guan, B.-O.

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
[Crossref]

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE. Photon. Technol. Lett. 17(1), 169–171 (2005).
[Crossref]

Guan, R.

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11(3), 240–254 (2005).
[Crossref]

Haroud, K.

Harrison, T.

Huang, D.

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11(3), 240–254 (2005).
[Crossref]

Jin, L.

Karimi, M.

Kersey, A.

Kim, B. Y.

Kim, H. K.

Kim, S. K.

Kirkendall, C. K.

G. A. Miller, G. A. Cranch, and C. K. Kirkendall, “High-Performance Sensing Using Fiber Lasers,” Opt. Photon. News 23(2), 30–36 (2012).
[Crossref]

Kringlebotn, J. T.

Labs, K. H.

B. Dunmire, K. W. Beach, K. H. Labs, M. Plett, and D. E. Strandness., “Cross-beam vector Doppler ultrasound for angle-independent velocity measurements,” Ultrasound Med. Biol. 26(8), 1213–1235 (2000).
[Crossref] [PubMed]

Laming, R. I.

Lau, S.-K.

Y. I. Wu, K. T. Wong, and S.-K. Lau, “The acoustic vector-sensor's near-field array-manifold,” IEEE. T. Signal Process. 58(7), 3946–3951 (2010).

Lau, S.-T.

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE. Photon. Technol. Lett. 17(1), 169–171 (2005).
[Crossref]

Liu, S.

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11(3), 240–254 (2005).
[Crossref]

Loh, W. H.

Lu, H.

Margulis, W.

Mathewson, K.

Meltz, G.

Miller, G. A.

G. A. Miller, G. A. Cranch, and C. K. Kirkendall, “High-Performance Sensing Using Fiber Lasers,” Opt. Photon. News 23(2), 30–36 (2012).
[Crossref]

Moccia, M.

Morey, W. W.

Niezrecki, C.

Park, H. G.

Pisco, M.

Plett, M.

B. Dunmire, K. W. Beach, K. H. Labs, M. Plett, and D. E. Strandness., “Cross-beam vector Doppler ultrasound for angle-independent velocity measurements,” Ultrasound Med. Biol. 26(8), 1213–1235 (2000).
[Crossref] [PubMed]

Ranasinghesagara, J. C.

Rochat, E.

Sielschott, H.

H. Sielschott, “Measurement of horizontal flow in a large scale furnace using acoustic vector tomography,” Flow Meas. Instrum. 8(3–4), 191–197 (1997).

Strandness, D. E.

B. Dunmire, K. W. Beach, K. H. Labs, M. Plett, and D. E. Strandness., “Cross-beam vector Doppler ultrasound for angle-independent velocity measurements,” Ultrasound Med. Biol. 26(8), 1213–1235 (2000).
[Crossref] [PubMed]

Sun, T.

Surre, F.

Tam, H.-Y.

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
[Crossref]

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE. Photon. Technol. Lett. 17(1), 169–171 (2005).
[Crossref]

Tian, Y.

Walsh, A.

Wang, W.

Wang, X.

Wong, K. T.

Y. I. Wu, K. T. Wong, and S.-K. Lau, “The acoustic vector-sensor's near-field array-manifold,” IEEE. T. Signal Process. 58(7), 3946–3951 (2010).

Wu, N.

Wu, Y. I.

Y. I. Wu, K. T. Wong, and S.-K. Lau, “The acoustic vector-sensor's near-field array-manifold,” IEEE. T. Signal Process. 58(7), 3946–3951 (2010).

Zemp, R. J.

Zhang, Y.

Zhu, F.

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11(3), 240–254 (2005).
[Crossref]

Appl. Opt. (1)

Flow Meas. Instrum. (1)

H. Sielschott, “Measurement of horizontal flow in a large scale furnace using acoustic vector tomography,” Flow Meas. Instrum. 8(3–4), 191–197 (1997).

IEEE. Photon. Technol. Lett. (1)

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE. Photon. Technol. Lett. 17(1), 169–171 (2005).
[Crossref]

IEEE. T. Signal Process. (1)

Y. I. Wu, K. T. Wong, and S.-K. Lau, “The acoustic vector-sensor's near-field array-manifold,” IEEE. T. Signal Process. 58(7), 3946–3951 (2010).

J. Lightwave Technol. (3)

Opt. Express (3)

Opt. Fiber Technol. (1)

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11(3), 240–254 (2005).
[Crossref]

Opt. Lett. (4)

Opt. Photon. News (1)

G. A. Miller, G. A. Cranch, and C. K. Kirkendall, “High-Performance Sensing Using Fiber Lasers,” Opt. Photon. News 23(2), 30–36 (2012).
[Crossref]

Ultrasound Med. Biol. (1)

B. Dunmire, K. W. Beach, K. H. Labs, M. Plett, and D. E. Strandness., “Cross-beam vector Doppler ultrasound for angle-independent velocity measurements,” Ultrasound Med. Biol. 26(8), 1213–1235 (2000).
[Crossref] [PubMed]

Other (2)

H. Y. Tam, H. L. W. Chan, and B. O. Guan, “Ultrasound sensor and ultrasound measurement device,” U.S. Patent 7206259 B2 (Apr. 2007).

A. Frank, K. Haroud, E. Rochat, K. Bohnert, H. Brandle, and Ieee, “High resolution fiber laser sensor for hydrostatic pressure,” in OFS2002: 15th Optical Fiber Sensors Conference Technical Digest(IEEE, New York, 2002), pp. 359–362.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig.
						1
Fig. 1 (a) Schematic of the DBR fiber laser sensor. (b) Output spectrum of the DBR fiber laser
Fig. 2
Fig. 2 The acoustic pressure P applied on the fiber cavity at an angle θ to the x ' axis
Fig.
						3
Fig. 3 Acoustic modulation corresponding to different angles between the principal polarization axes of fiber and the propagation direction of acoustic wave. (a) 45°. (b) close to 45°. (c) close to 0° or 90°.
Fig. 4
Fig. 4 Experimental setup of the directional acoustic signal measurement based on a short cavity DBR fiber laser sensor. The inset is the photograph of the DBR fiber laser spectrum when it is pumped.
Fig.
						5
Fig. 5 Modulation spectra when the ultrasound driven at 8 V with different driving frequency
Fig.
						6
Fig. 6 Modulation spectra when the ultrasound driven at 10 MHz with different driving voltage
Fig.
						7
Fig. 7 Modulated beat signal spectra when ultrasonic pressure applied at different angles
Fig.
							8
Fig. 8 Directional patterns of DBR fiber laser acoustic sensor

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δν= ν x ν y = c n 0 λ 0 B.
E i = E b cos[ ω b t+ϕ(t)].
δ(t)= U u cos( ω u t+ ψ 0 ).
E i = E b cos[ ω b t+ k f t δ(t) dt)]= E b cos[ ω b t+ k f t U u cos( ω u t+ ψ 0 ) dt)] = E b cos[ ω b t+ M f sin( ω u t+ ψ 0 )].
k f =Kδ ε xy .
δ ε x = ε 2 [( P 11 cos 2 θ+ P 12 sin 2 θ) e x ' +( P 11 sin 2 θ+ P 12 cos 2 θ) e y ' ].
δ ε y = ε 2 [( P 11 sin 2 θ+ P 12 cos 2 θ) e x ' +( P 11 cos 2 θ+ P 12 sin 2 θ) e y ' ].
δ ε xy =δ ε x δ ε y =2 ε 2 P 44 ( e y ' e x ' )cos2θ.
E i = E b cos ω b t.
E i E b (cos ω b t M f sin ω b tsin ω u t) = E b [cos ω b t+( M f /2)cos( ω b + ω u )t( M f /2)cos( ω b ω u )t].
E i = E b cos( ω b t+ M f sin ω u t)= E b n= J n ( M f )cos( ω b +n ω u )t .

Metrics