Abstract

Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intermodal and cross-polarization four-wave mixing in large-core hybrid photonic crystal fibers

Sidsel R. Petersen, Thomas T. Alkeskjold, Christina B. Olausson, and Jesper Lægsgaard
Opt. Express 23(5) 5954-5971 (2015)

Polarization switch of four-wave mixing in large mode area hybrid photonic crystal fibers

Sidsel R. Petersen, Thomas T. Alkeskjold, Christina B. Olausson, and Jesper Lægsgaard
Opt. Lett. 40(4) 487-490 (2015)

Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths

Sidsel R. Petersen, Thomas T. Alkeskjold, Federica Poli, Enrico Coscelli, Mette M. Jørgensen, Marko Laurila, Jesper Lægsgaard, and Jes Broeng
Opt. Express 20(6) 6010-6020 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell“Anomalous Dispersion in Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
    [Crossref]
  2. C. Jauregui, A. Steinmetz, J. Limpert, and A. Tünnermann, “High-power efficient generation of visible and mid-infrared radiation exploiting four-wave-mixing in optical fibers,” Opt. Express 20(22), 24957–24965 (2012).
    [Crossref] [PubMed]
  3. L. S. Rishøj, P. E. Steinvurzel, Y. Chen, L. Yan, J. D. Demas, M. D. W. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran“High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres,” ECOC Technical Digest, 38th European Conference and Exhibition on Optical Communication (2012).
  4. T. T. Alkeskjold, “Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity,” Opt. Express 17(19), 16394–16405 (2009).
    [Crossref] [PubMed]
  5. S. R. Petersen, T. T. Alkeskjold, F. Poli, E. Coscelli, M. M. Jørgensen, M. Laurila, J. Lægsgaard, and J. Broeng, “Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths,” Opt. Express 20(6), 6010–6020 (2012).
    [Crossref] [PubMed]
  6. COMSOL Multiphysics, “COMSOL homepage,” version 4.3, www.comsol.com .
  7. NKT Photonics, “LMA-25 specification sheet,” first edition, 2006, www.nktphotonics.com/files/files/LMA-25.pdf .
  8. J. Hansryd and P. A. Andrekson, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [Crossref]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, United States of America, Fourth edition, 2007).
  10. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
    [Crossref] [PubMed]

2012 (2)

2009 (1)

2003 (1)

2002 (1)

J. Hansryd and P. A. Andrekson, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

2000 (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell“Anomalous Dispersion in Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, United States of America, Fourth edition, 2007).

Alkeskjold, T. T.

Andrekson, P. A.

J. Hansryd and P. A. Andrekson, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell“Anomalous Dispersion in Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell“Anomalous Dispersion in Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Broeng, J.

Chen, Y.

L. S. Rishøj, P. E. Steinvurzel, Y. Chen, L. Yan, J. D. Demas, M. D. W. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran“High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres,” ECOC Technical Digest, 38th European Conference and Exhibition on Optical Communication (2012).

Coscelli, E.

Crozier, K.

L. S. Rishøj, P. E. Steinvurzel, Y. Chen, L. Yan, J. D. Demas, M. D. W. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran“High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres,” ECOC Technical Digest, 38th European Conference and Exhibition on Optical Communication (2012).

de Sterke, C. M.

Demas, J. D.

L. S. Rishøj, P. E. Steinvurzel, Y. Chen, L. Yan, J. D. Demas, M. D. W. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran“High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres,” ECOC Technical Digest, 38th European Conference and Exhibition on Optical Communication (2012).

Dunn, S. C.

Eggleton, B. J.

Ellenbogen, T.

L. S. Rishøj, P. E. Steinvurzel, Y. Chen, L. Yan, J. D. Demas, M. D. W. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran“High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres,” ECOC Technical Digest, 38th European Conference and Exhibition on Optical Communication (2012).

Grogan, M. D. W.

L. S. Rishøj, P. E. Steinvurzel, Y. Chen, L. Yan, J. D. Demas, M. D. W. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran“High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres,” ECOC Technical Digest, 38th European Conference and Exhibition on Optical Communication (2012).

Hansryd, J.

J. Hansryd and P. A. Andrekson, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Jauregui, C.

Jørgensen, M. M.

Knight, J. C.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell“Anomalous Dispersion in Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Lægsgaard, J.

Laurila, M.

Limpert, J.

Litchinitser, N. M.

McPhedran, R. C.

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell“Anomalous Dispersion in Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Petersen, S. R.

Poli, F.

Ramachandran, S.

L. S. Rishøj, P. E. Steinvurzel, Y. Chen, L. Yan, J. D. Demas, M. D. W. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran“High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres,” ECOC Technical Digest, 38th European Conference and Exhibition on Optical Communication (2012).

Rishøj, L. S.

L. S. Rishøj, P. E. Steinvurzel, Y. Chen, L. Yan, J. D. Demas, M. D. W. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran“High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres,” ECOC Technical Digest, 38th European Conference and Exhibition on Optical Communication (2012).

Rottwitt, K.

L. S. Rishøj, P. E. Steinvurzel, Y. Chen, L. Yan, J. D. Demas, M. D. W. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran“High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres,” ECOC Technical Digest, 38th European Conference and Exhibition on Optical Communication (2012).

Russell, P. St. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell“Anomalous Dispersion in Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Steinmetz, A.

Steinvurzel, P. E.

L. S. Rishøj, P. E. Steinvurzel, Y. Chen, L. Yan, J. D. Demas, M. D. W. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran“High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres,” ECOC Technical Digest, 38th European Conference and Exhibition on Optical Communication (2012).

Tünnermann, A.

Usner, B.

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell“Anomalous Dispersion in Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

White, T. P.

Yan, L.

L. S. Rishøj, P. E. Steinvurzel, Y. Chen, L. Yan, J. D. Demas, M. D. W. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran“High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres,” ECOC Technical Digest, 38th European Conference and Exhibition on Optical Communication (2012).

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd and P. A. Andrekson, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell“Anomalous Dispersion in Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Opt. Express (4)

Other (4)

L. S. Rishøj, P. E. Steinvurzel, Y. Chen, L. Yan, J. D. Demas, M. D. W. Grogan, T. Ellenbogen, K. Crozier, K. Rottwitt, and S. Ramachandran“High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres,” ECOC Technical Digest, 38th European Conference and Exhibition on Optical Communication (2012).

COMSOL Multiphysics, “COMSOL homepage,” version 4.3, www.comsol.com .

NKT Photonics, “LMA-25 specification sheet,” first edition, 2006, www.nktphotonics.com/files/files/LMA-25.pdf .

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, United States of America, Fourth edition, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Microscope images of the considered fibers. (a) A silica double-clad large mode area hybrid photonic crystal fiber, with an airclad as the outer cladding. The inner cladding consists of airholes (black circles) placed in a hexagonal lattice with hole-to-hole spacing Λ and seven missing airholes define the core region. One row of airholes is replaced with high-index Germanium-doped silica rods of two sizes (white circles), one on each side of the core, respectively. (b) A silica large mode area photonic crystal fiber. Airholes (black circles) are placed in a hexagonal lattice, and a single missing airhole defines the core region.
Fig. 2
Fig. 2 (a) White light transmission measurement of the hybrid photonic crystal fiber. (b) Calculated overlap integral of the fundamental mode in the hybrid photonic crystal fiber polarised along the Germanium-doped silica rods with the core region. (c) Calculated group velocity dispersion parameter in the transmission band 995nm – 1065nm of Fig. 2(b). (d) Calculated group velocity dispersion parameter of a large mode area photonic crystal fiber without high-index inclusions in the cladding.
Fig. 3
Fig. 3 Calculated parametric gain for different pump wavelengths. The solid line is the parametric gain (y-axis on the left), the dashed line is the overlap integral (y-axis on the right). The pump wavelengths 1044 nm, 1048 nm, and 1052 nm lie in the normal dispersion regime, 1056 nm, 1060 nm, and 1064 nm in the anomalous dispersion regime, with zero dispersion wavelength at 1054.5 nm.
Fig. 4
Fig. 4 Surface plot of the parametric gain for pump wavelengths 1035 nm to 1070 nm in steps of 1 nm.
Fig. 5
Fig. 5 (a) Group velocity dispersion profiles in the transmission band for the hybrid photonic crystal fiber for a range of dlarge/dsmall = 1,..., 1.2336 in step sizes of 0.0117. (b) Zoom of the group velocity dispersion profiles near the zero dispersion wavelength.
Fig. 6
Fig. 6 Overlap integrals (solid lines, y-axis on the left) and group velocity dispersion parameters (dashed lines, y-axis on the right) for the two ratios dlarge/dsmall = 1 and dlarge/dsmall = 1.2336. Furthermore a Gaussian distribution is plotted at 1056 nm to mark the pump wavelength. For the dlarge/dsmall = 1 the pump is located in the anomalous dispersion regime and for dlarge/dsmall = 1.2336 the pump is located in the normal dispersion regime.
Fig. 7
Fig. 7 Calculated parametric gain (solid line, y-axis on the left) for a pump wavelength of 1056 nm. The overlap integral is also shown (dashed line, y-axis on the right), to illustrate the position of the gain with respect to the transmission band. (a) Pump wavelength is positioned in the anomalous dispersion regime, dlarge/dsmall = 1, dsmall = 6.0μm. (b) Pump wavelength is positioned in the normal dispersion regime, dlarge/dsmall = 1.2336, dsmall = 6.0μm. (c) Pump wavelength is positioned in the anomalous dispersion regime, dlarge/dsmall = 1, dsmall = 6.1μm.
Fig. 8
Fig. 8 Schematic illustration of the experimental setup. The linear polarized laser light is launched in the hybrid photonic crystal fiber through a half-wave plate ( λ 2) and a Polarizing Beamsplitter Cube (PBC), followed by a second half-wave plate ( λ 2). A 1064 nm laser line filter of FWHM ∼ 4 nm is inserted to clean-up the laser light. The fiber output is imaged onto a pick-up fiber with core diameter 5 μm and NA ∼ 0.6 through a glass wedge. The pick-up fiber is connected to an Optical Spectrum Analyzer (OSA). The measured fiber segment is also shown.
Fig. 9
Fig. 9 (a) Output power of a large mode area photonic crystal fiber (LMA-25) for a range of input pump peak powers. Raman scattering is observed above 1100 nm, and self-phase modulation is observed in the vicinity of the pump. (b) Core output power of a hybrid large mode area photonic crystal fiber for a range of input pump peak powers. Furthermore the white light transmission spectrum of Fig. 2(a) is plotted. Self-phase modulation and four wave mixing is observed.
Fig. 10
Fig. 10 Output power of the hybrid photonic crystal fiber, the input average power and peak power are given in the titles. Four wave mixing is observed for increasing launched laser power
Fig. 11
Fig. 11 (a) Spatial power distribution at wavelenghts 1023 nm, 1045 nm, 1064 nm, 1083 nm, and 1104 nm, with the power magnitude on a linear scale, for a launched laser peak power of 102.5 kW. The plots are normalized to the maximum measured power at each given wavelength, also stated in the plots. (b) Calculated spatial field distribution at 983 nm. (c) Calculated spatial field distribution at 1081 nm.
Fig. 12
Fig. 12 Spectra from selected measurement points. The spectra correspond to the measurements where the pick-up fiber is positioned at the largest power output point for 1064 nm and 1083 nm, respectively. These positions are marked in the inset.

Metrics