Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
[Crossref]
[PubMed]
A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]
S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express 19, 9020–9026 (2011).
[Crossref]
[PubMed]
C. Junge, S. Nickel, D. O’Shea, and A. Rauschenbeutel, “Bottle microresonator with actively stabilized evanescent coupling,” Opt. Lett. 36, 3488–3490 (2011).
[Crossref]
[PubMed]
S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express 19, 24522–24529 (2011).
[Crossref]
[PubMed]
J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[Crossref]
[PubMed]
M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a slicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
[Crossref]
Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]
A. Mirzaei and A. A. Abidi, “The spectrum of a noisy free-running oscillator explained by random frequency pulling,” IEEE Trans. Circuits Syst., I: Regul. Pap. 57, 642–653 (2010).
[Crossref]
K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[Crossref]
[PubMed]
T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[Crossref]
M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschr. Phys. 57, 1153–1162 (2009).
[Crossref]
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]
[PubMed]
A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[Crossref]
[PubMed]
X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[Crossref]
[PubMed]
G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]
K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533–537 (2008).
[Crossref]
[PubMed]
L. Haiberger, M. Weingran, and S. Schiller, “Highly sensitive silicon crystal torque sensor operating at the thermal noise limit,” Rev. Sci. Instrum. 78, 025101 (2007).
[Crossref]
[PubMed]
J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[Crossref]
R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]
M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
[Crossref]
H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
[Crossref]
T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]
[PubMed]
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
[Crossref]
[PubMed]
K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[Crossref]
W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[Crossref]
[PubMed]
W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sens. Actuators A, Phys. 102, 139–150 (2002).
[Crossref]
M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).
A. Cleland and M. Roukes, “A nanometre-scale mechanical electrometer,” Nature 392, 160–162 (1998).
[Crossref]
D. Rugar and P. Grutter, “Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett. 67, 699–702 (1991).
[Crossref]
[PubMed]
W. A. Edson, “Noise in oscillators,” Proc. IRE 48, 1454–1466 (1960).
[Crossref]
A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]
J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer,” Phys. Rev. 99, 1264–1274 (1955).
[Crossref]
J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[Crossref]
A. Mirzaei and A. A. Abidi, “The spectrum of a noisy free-running oscillator explained by random frequency pulling,” IEEE Trans. Circuits Syst., I: Regul. Pap. 57, 642–653 (2010).
[Crossref]
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]
G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]
G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]
M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschr. Phys. 57, 1153–1162 (2009).
[Crossref]
M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschr. Phys. 57, 1153–1162 (2009).
[Crossref]
J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[Crossref]
W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sens. Actuators A, Phys. 102, 139–150 (2002).
[Crossref]
S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express 19, 9020–9026 (2011).
[Crossref]
[PubMed]
S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express 19, 24522–24529 (2011).
[Crossref]
[PubMed]
S. Sridaran and S. A. Bhave, “Opto-acoustic oscillator using silicon MEMS optical modulator,” in Proceedings of 16th International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2011), pp. 2920–2923.
[Crossref]
W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[Crossref]
[PubMed]
K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[Crossref]
[PubMed]
T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[Crossref]
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
[Crossref]
[PubMed]
J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[Crossref]
[PubMed]
Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
[Crossref]
[PubMed]
Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]
[PubMed]
T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]
[PubMed]
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]
[PubMed]
Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
[Crossref]
[PubMed]
A. Cleland and M. Roukes, “A nanometre-scale mechanical electrometer,” Nature 392, 160–162 (1998).
[Crossref]
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]
[PubMed]
W. A. Edson, “Noise in oscillators,” Proc. IRE 48, 1454–1466 (1960).
[Crossref]
Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]
K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[Crossref]
J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[Crossref]
Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
[Crossref]
[PubMed]
A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[Crossref]
[PubMed]
X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[Crossref]
[PubMed]
J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[Crossref]
E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip opto-nanomechanical transducer for ultra-sensitive force measurements,” arXiv:1112.0797v1 (2011).
J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer,” Phys. Rev. 99, 1264–1274 (1955).
[Crossref]
D. Rugar and P. Grutter, “Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett. 67, 699–702 (1991).
[Crossref]
[PubMed]
M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).
L. Haiberger, M. Weingran, and S. Schiller, “Highly sensitive silicon crystal torque sensor operating at the thermal noise limit,” Rev. Sci. Instrum. 78, 025101 (2007).
[Crossref]
[PubMed]
X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[Crossref]
[PubMed]
M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
[Crossref]
H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
[Crossref]
A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[Crossref]
[PubMed]
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]
[PubMed]
T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[Crossref]
K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[Crossref]
[PubMed]
M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).
A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[Crossref]
[PubMed]
M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a slicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
[Crossref]
H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
[Crossref]
M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
[Crossref]
K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533–537 (2008).
[Crossref]
[PubMed]
R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]
K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533–537 (2008).
[Crossref]
[PubMed]
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]
G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]
[PubMed]
T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]
[PubMed]
E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip opto-nanomechanical transducer for ultra-sensitive force measurements,” arXiv:1112.0797v1 (2011).
K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[Crossref]
[PubMed]
T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[Crossref]
J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[Crossref]
[PubMed]
T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[Crossref]
K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[Crossref]
[PubMed]
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]
[PubMed]
Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]
F. G. Major, The Quantum Beat: Principles and Applications of Atomic Clocks (Springer, 1998).
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
[Crossref]
[PubMed]
J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[Crossref]
[PubMed]
W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[Crossref]
[PubMed]
K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[Crossref]
[PubMed]
T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[Crossref]
A. Mirzaei and A. A. Abidi, “The spectrum of a noisy free-running oscillator explained by random frequency pulling,” IEEE Trans. Circuits Syst., I: Regul. Pap. 57, 642–653 (2010).
[Crossref]
A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[Crossref]
[PubMed]
A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]
Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]
R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]
J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[Crossref]
[PubMed]
W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[Crossref]
[PubMed]
J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[Crossref]
M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]
G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]
W. P. Robins, Phase Noise in Signal Sources (Peter Peregrinus Ltd, 1982), pp. 48–53.
H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
[Crossref]
M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
[Crossref]
T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]
[PubMed]
Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]
A. Cleland and M. Roukes, “A nanometre-scale mechanical electrometer,” Nature 392, 160–162 (1998).
[Crossref]
Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
[Crossref]
[PubMed]
A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[Crossref]
[PubMed]
X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[Crossref]
[PubMed]
K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[Crossref]
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
[Crossref]
[PubMed]
D. Rugar and P. Grutter, “Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett. 67, 699–702 (1991).
[Crossref]
[PubMed]
A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]
A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]
[PubMed]
L. Haiberger, M. Weingran, and S. Schiller, “Highly sensitive silicon crystal torque sensor operating at the thermal noise limit,” Rev. Sci. Instrum. 78, 025101 (2007).
[Crossref]
[PubMed]
R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]
G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]
J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[Crossref]
[PubMed]
W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[Crossref]
[PubMed]
S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express 19, 9020–9026 (2011).
[Crossref]
[PubMed]
S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express 19, 24522–24529 (2011).
[Crossref]
[PubMed]
S. Sridaran and S. A. Bhave, “Opto-acoustic oscillator using silicon MEMS optical modulator,” in Proceedings of 16th International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2011), pp. 2920–2923.
[Crossref]
R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]
[PubMed]
J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[Crossref]
J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[Crossref]
A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]
J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer,” Phys. Rev. 99, 1264–1274 (1955).
[Crossref]
W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sens. Actuators A, Phys. 102, 139–150 (2002).
[Crossref]
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]
J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[Crossref]
M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a slicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
[Crossref]
Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]
H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
[Crossref]
M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
[Crossref]
T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]
[PubMed]
J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[Crossref]
E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip opto-nanomechanical transducer for ultra-sensitive force measurements,” arXiv:1112.0797v1 (2011).
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]
L. Haiberger, M. Weingran, and S. Schiller, “Highly sensitive silicon crystal torque sensor operating at the thermal noise limit,” Rev. Sci. Instrum. 78, 025101 (2007).
[Crossref]
[PubMed]
X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[Crossref]
[PubMed]
T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]
[PubMed]
Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
[Crossref]
[PubMed]
K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[Crossref]
J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer,” Phys. Rev. 99, 1264–1274 (1955).
[Crossref]
M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschr. Phys. 57, 1153–1162 (2009).
[Crossref]
R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]
K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533–537 (2008).
[Crossref]
[PubMed]
W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sens. Actuators A, Phys. 102, 139–150 (2002).
[Crossref]
R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]
H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett. 89, 261109 (2006).
[Crossref]
J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett. 91, 013501 (2007).
[Crossref]
M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).
M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschr. Phys. 57, 1153–1162 (2009).
[Crossref]
M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a slicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
[Crossref]
A. Mirzaei and A. A. Abidi, “The spectrum of a noisy free-running oscillator explained by random frequency pulling,” IEEE Trans. Circuits Syst., I: Regul. Pap. 57, 642–653 (2010).
[Crossref]
K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[Crossref]
Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
[Crossref]
[PubMed]
J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10, 2537–2542 (2010).
[Crossref]
[PubMed]
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]
[PubMed]
K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533–537 (2008).
[Crossref]
[PubMed]
X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[Crossref]
[PubMed]
A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 4, 445–450 (2009).
[Crossref]
[PubMed]
G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]
Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004).
[Crossref]
[PubMed]
A. Cleland and M. Roukes, “A nanometre-scale mechanical electrometer,” Nature 392, 160–162 (1998).
[Crossref]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]
A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys. 13, 013017 (2011).
[Crossref]
J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer,” Phys. Rev. 99, 1264–1274 (1955).
[Crossref]
A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]
M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 23813–23827 (2006).
[Crossref]
T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A 82, 23825–23831 (2010).
[Crossref]
D. Rugar and P. Grutter, “Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett. 67, 699–702 (1991).
[Crossref]
[PubMed]
T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref]
[PubMed]
K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604–123607 (2010).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]
[PubMed]
W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[Crossref]
[PubMed]
W. A. Edson, “Noise in oscillators,” Proc. IRE 48, 1454–1466 (1960).
[Crossref]
L. Haiberger, M. Weingran, and S. Schiller, “Highly sensitive silicon crystal torque sensor operating at the thermal noise limit,” Rev. Sci. Instrum. 78, 025101 (2007).
[Crossref]
[PubMed]
W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sens. Actuators A, Phys. 102, 139–150 (2002).
[Crossref]
E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip opto-nanomechanical transducer for ultra-sensitive force measurements,” arXiv:1112.0797v1 (2011).
F. G. Major, The Quantum Beat: Principles and Applications of Atomic Clocks (Springer, 1998).
W. P. Robins, Phase Noise in Signal Sources (Peter Peregrinus Ltd, 1982), pp. 48–53.
S. Sridaran and S. A. Bhave, “Opto-acoustic oscillator using silicon MEMS optical modulator,” in Proceedings of 16th International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2011), pp. 2920–2923.
[Crossref]