P. J. Chiang and Y. C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22, 908–910 (2010).
[Crossref]
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66 (2008).
[Crossref]
C. H. Teng, B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, “A Legendre pseudospectral penalty scheme for solving time-domain Maxwell’s equations,” J. Sci. Comput. 36, 351–390 (2008).
[Crossref]
P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).
[Crossref]
C. C. Huang, C. C. Huang, and J. Y. Yang, “A full-vectorial pseudospectral modal analysis of dielectric optical waveguides with stepped refractive index profiles,” IEEE J. Sel. Top. Quantum Electron. 11, 457–465 (2005).
[Crossref]
G. Zhao and Q. H. Liu, “The 3-D multidomain pseudospectral time-domain algorithm for inhomogeneous conductive media,” IEEE Trans. Antennas Propagat. 52, 742–749 (2004).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multi-pole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. Mcphedran, “Multi-pole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antennas Wireless Propagat. Lett. 1, 131–134 (2002).
[Crossref]
G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces,” J. Lightwave Technol. 20, 1210–1218 (2002).
[Crossref]
G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners,” J. Lightwave Technol. 20, 1219–1231 (2002).
[Crossref]
N. Thomas, P. Sewell, and T. M. Benson, “A new full-vectorial higher order finite-difference scheme for the modal analysis of rectangular dielectric waveguides,” J. Lightwave Technol. 25, 2563–2570 (2002).
[Crossref]
Y. C. Chiang, Y. P. Chiou, and H. C. Chang, “Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles,” J. Lightwave Technol. 20, 1609–1618, (2002).
[Crossref]
B. Yang and J. S. Hesthaven, “A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,” IEEE Trans. Antennas Propagat. 47, 132–141 (1999).
[Crossref]
J. S. Hesthaven, P. G. Dinesen, and J. P. Lynov, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999).
[Crossref]
B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).
[Crossref]
Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat. 43, 1460–1463 (1995).
[Crossref]
W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).
[Crossref]
J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 114, 185–200 (1994).
[Crossref]
W. J. Gordon and C. A. Hall, “Transfinite element methods: blending-function interpolation over arbitrary curved element domains,” Numer. Math. 21, 109–129 (1973).
[Crossref]
J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 114, 185–200 (1994).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. Mcphedran, “Multi-pole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multi-pole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
C. H. Teng, B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, “A Legendre pseudospectral penalty scheme for solving time-domain Maxwell’s equations,” J. Sci. Comput. 36, 351–390 (2008).
[Crossref]
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66 (2008).
[Crossref]
P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).
[Crossref]
Y. C. Chiang, Y. P. Chiou, and H. C. Chang, “Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles,” J. Lightwave Technol. 20, 1609–1618, (2002).
[Crossref]
P. J. Chiang and H. C. Chang, “Analysis of leaky optical waveguides using pseudospectral methods,” OSA 2006 Integrated Photonics Research and Applications (IPRA ’06) Technical Digest (Optical Society of America, 2005), paper ITuA3.
P. J. Chiang, C. S. Yang, C. L. Wu, C. H. Teng, and H. C. Chang, “Application of pseudospectral methods to optical waveguide mode solvers,” OSA 2005 Integrated Photonics Research and Applications (IPRA ’05) Technical Digest (Optical Society of America, 2005), paper IMG4.
W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).
[Crossref]
P. J. Chiang and Y. C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22, 908–910 (2010).
[Crossref]
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66 (2008).
[Crossref]
P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).
[Crossref]
P. J. Chiang, C. S. Yang, C. L. Wu, C. H. Teng, and H. C. Chang, “Application of pseudospectral methods to optical waveguide mode solvers,” OSA 2005 Integrated Photonics Research and Applications (IPRA ’05) Technical Digest (Optical Society of America, 2005), paper IMG4.
P. J. Chiang and H. C. Chang, “Analysis of leaky optical waveguides using pseudospectral methods,” OSA 2006 Integrated Photonics Research and Applications (IPRA ’06) Technical Digest (Optical Society of America, 2005), paper ITuA3.
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. Mcphedran, “Multi-pole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multi-pole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
J. S. Hesthaven, P. G. Dinesen, and J. P. Lynov, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999).
[Crossref]
C. H. Teng, B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, “A Legendre pseudospectral penalty scheme for solving time-domain Maxwell’s equations,” J. Sci. Comput. 36, 351–390 (2008).
[Crossref]
W. J. Gordon and C. A. Hall, “Transfinite element methods: blending-function interpolation over arbitrary curved element domains,” Numer. Math. 21, 109–129 (1973).
[Crossref]
B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).
[Crossref]
W. J. Gordon and C. A. Hall, “Transfinite element methods: blending-function interpolation over arbitrary curved element domains,” Numer. Math. 21, 109–129 (1973).
[Crossref]
B. Yang and J. S. Hesthaven, “A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,” IEEE Trans. Antennas Propagat. 47, 132–141 (1999).
[Crossref]
J. S. Hesthaven, P. G. Dinesen, and J. P. Lynov, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999).
[Crossref]
B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).
[Crossref]
C. H. Teng, B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, “A Legendre pseudospectral penalty scheme for solving time-domain Maxwell’s equations,” J. Sci. Comput. 36, 351–390 (2008).
[Crossref]
C. C. Huang, C. C. Huang, and J. Y. Yang, “A full-vectorial pseudospectral modal analysis of dielectric optical waveguides with stepped refractive index profiles,” IEEE J. Sel. Top. Quantum Electron. 11, 457–465 (2005).
[Crossref]
C. C. Huang, C. C. Huang, and J. Y. Yang, “A full-vectorial pseudospectral modal analysis of dielectric optical waveguides with stepped refractive index profiles,” IEEE J. Sel. Top. Quantum Electron. 11, 457–465 (2005).
[Crossref]
Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat. 43, 1460–1463 (1995).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multi-pole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. Mcphedran, “Multi-pole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat. 43, 1460–1463 (1995).
[Crossref]
Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat. 43, 1460–1463 (1995).
[Crossref]
C. H. Teng, B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, “A Legendre pseudospectral penalty scheme for solving time-domain Maxwell’s equations,” J. Sci. Comput. 36, 351–390 (2008).
[Crossref]
C. H. Teng, B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, “A Legendre pseudospectral penalty scheme for solving time-domain Maxwell’s equations,” J. Sci. Comput. 36, 351–390 (2008).
[Crossref]
G. Zhao and Q. H. Liu, “The 3-D multidomain pseudospectral time-domain algorithm for inhomogeneous conductive media,” IEEE Trans. Antennas Propagat. 52, 742–749 (2004).
[Crossref]
Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antennas Wireless Propagat. Lett. 1, 131–134 (2002).
[Crossref]
J. S. Hesthaven, P. G. Dinesen, and J. P. Lynov, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. Mcphedran, “Multi-pole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multi-pole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. Mcphedran, “Multi-pole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multi-pole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multi-pole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. Mcphedran, “Multi-pole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat. 43, 1460–1463 (1995).
[Crossref]
C. H. Teng, B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, “A Legendre pseudospectral penalty scheme for solving time-domain Maxwell’s equations,” J. Sci. Comput. 36, 351–390 (2008).
[Crossref]
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66 (2008).
[Crossref]
P. J. Chiang, C. S. Yang, C. L. Wu, C. H. Teng, and H. C. Chang, “Application of pseudospectral methods to optical waveguide mode solvers,” OSA 2005 Integrated Photonics Research and Applications (IPRA ’05) Technical Digest (Optical Society of America, 2005), paper IMG4.
W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multi-pole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. Mcphedran, “Multi-pole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66 (2008).
[Crossref]
P. J. Chiang, C. S. Yang, C. L. Wu, C. H. Teng, and H. C. Chang, “Application of pseudospectral methods to optical waveguide mode solvers,” OSA 2005 Integrated Photonics Research and Applications (IPRA ’05) Technical Digest (Optical Society of America, 2005), paper IMG4.
B. Yang and J. S. Hesthaven, “A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,” IEEE Trans. Antennas Propagat. 47, 132–141 (1999).
[Crossref]
B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).
[Crossref]
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66 (2008).
[Crossref]
P. J. Chiang, C. S. Yang, C. L. Wu, C. H. Teng, and H. C. Chang, “Application of pseudospectral methods to optical waveguide mode solvers,” OSA 2005 Integrated Photonics Research and Applications (IPRA ’05) Technical Digest (Optical Society of America, 2005), paper IMG4.
C. C. Huang, C. C. Huang, and J. Y. Yang, “A full-vectorial pseudospectral modal analysis of dielectric optical waveguides with stepped refractive index profiles,” IEEE J. Sel. Top. Quantum Electron. 11, 457–465 (2005).
[Crossref]
P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).
[Crossref]
G. Zhao and Q. H. Liu, “The 3-D multidomain pseudospectral time-domain algorithm for inhomogeneous conductive media,” IEEE Trans. Antennas Propagat. 52, 742–749 (2004).
[Crossref]
Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antennas Wireless Propagat. Lett. 1, 131–134 (2002).
[Crossref]
P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66 (2008).
[Crossref]
C. C. Huang, C. C. Huang, and J. Y. Yang, “A full-vectorial pseudospectral modal analysis of dielectric optical waveguides with stepped refractive index profiles,” IEEE J. Sel. Top. Quantum Electron. 11, 457–465 (2005).
[Crossref]
P. J. Chiang and Y. C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22, 908–910 (2010).
[Crossref]
Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat. 43, 1460–1463 (1995).
[Crossref]
B. Yang and J. S. Hesthaven, “A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,” IEEE Trans. Antennas Propagat. 47, 132–141 (1999).
[Crossref]
G. Zhao and Q. H. Liu, “The 3-D multidomain pseudospectral time-domain algorithm for inhomogeneous conductive media,” IEEE Trans. Antennas Propagat. 52, 742–749 (2004).
[Crossref]
J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 114, 185–200 (1994).
[Crossref]
J. S. Hesthaven, P. G. Dinesen, and J. P. Lynov, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999).
[Crossref]
B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).
[Crossref]
Y. C. Chiang, Y. P. Chiou, and H. C. Chang, “Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles,” J. Lightwave Technol. 20, 1609–1618, (2002).
[Crossref]
N. Thomas, P. Sewell, and T. M. Benson, “A new full-vectorial higher order finite-difference scheme for the modal analysis of rectangular dielectric waveguides,” J. Lightwave Technol. 25, 2563–2570 (2002).
[Crossref]
K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19, 405–413 (2001).
[Crossref]
Y. Tsuji and M. Koshiba, “Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme,” J. Lightwave Technol. 18, 618–623 (2000).
[Crossref]
M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–743 (2000).
[Crossref]
G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces,” J. Lightwave Technol. 20, 1210–1218 (2002).
[Crossref]
G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners,” J. Lightwave Technol. 20, 1219–1231 (2002).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multi-pole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. Mcphedran, “Multi-pole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
C. H. Teng, B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, “A Legendre pseudospectral penalty scheme for solving time-domain Maxwell’s equations,” J. Sci. Comput. 36, 351–390 (2008).
[Crossref]
W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).
[Crossref]
W. J. Gordon and C. A. Hall, “Transfinite element methods: blending-function interpolation over arbitrary curved element domains,” Numer. Math. 21, 109–129 (1973).
[Crossref]
P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).
[Crossref]
P. J. Chiang, C. S. Yang, C. L. Wu, C. H. Teng, and H. C. Chang, “Application of pseudospectral methods to optical waveguide mode solvers,” OSA 2005 Integrated Photonics Research and Applications (IPRA ’05) Technical Digest (Optical Society of America, 2005), paper IMG4.
P. J. Chiang and H. C. Chang, “Analysis of leaky optical waveguides using pseudospectral methods,” OSA 2006 Integrated Photonics Research and Applications (IPRA ’06) Technical Digest (Optical Society of America, 2005), paper ITuA3.
C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express12, 6165–6177 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165 .
[Crossref]
[PubMed]
B. Y. Lin, H. C. Hsu, C. H. Teng, H. C. Chang, J. K. Wang, and Y. L. Wang, “Unraveling near-field origin of electromagnetic waves scattered from silver nanorod arrays using pseudo-spectral time-domain calculation,” Opt. Express17, 14211–14228 (2009). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-14211 .
[Crossref]
[PubMed]