C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010).
[Crossref]
Y. S. Zhou, B. Y. Gu, and H. Y. Wang, “Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics,” Phys. Rev. A 81, 015801 (2010).
[Crossref]
J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009).
[Crossref]
[PubMed]
X. S. Lin and X. G. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009).
[Crossref]
S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[Crossref]
Q. Zhang, X. Huang, X. Lin, J. Tao, and X. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7555 (2009).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
A. Houseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008).
[Crossref]
X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008).
[Crossref]
[PubMed]
Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
[Crossref]
[PubMed]
Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[Crossref]
B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[Crossref]
A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Surface plasmon polaritons on metallic surfaces,” Opt. Express 15, 183–197 (2007).
[Crossref]
[PubMed]
E. Feigenbaum and M. Orenstein, “Modeling of complementary (void) plasmon waveguiding,” J. Lightwave Technol. 25, 2547–2562 (2007).
[Crossref]
G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]
H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[Crossref]
[PubMed]
T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyia, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]
Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref]
[PubMed]
Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[Crossref]
[PubMed]
F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63, 165103 (2001).
[Crossref]
J. Pendry, “Playing tricks with light,” Science 285, 1687–1688 (1999).
[Crossref]
J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]
L. C. Botten and R. C. McPhedran, “Completeness and modal expansion methods in diffraction theory,” Opt. Acta 32, 1479–1488 (1985).
[Crossref]
L. C. Botten, M. S. Craig, and R. C. McPhedran, “Complex zeros of analytic functions,” Computer Phys. Commun. 29, 245–259 (1983).
[Crossref]
L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[Crossref]
L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[Crossref]
P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[Crossref]
L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[Crossref]
J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]
L. C. Botten and R. C. McPhedran, “Completeness and modal expansion methods in diffraction theory,” Opt. Acta 32, 1479–1488 (1985).
[Crossref]
L. C. Botten, M. S. Craig, and R. C. McPhedran, “Complex zeros of analytic functions,” Computer Phys. Commun. 29, 245–259 (1983).
[Crossref]
L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[Crossref]
L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[Crossref]
T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyia, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]
Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref]
[PubMed]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, 1955).
R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, 1966).
L. C. Botten, M. S. Craig, and R. C. McPhedran, “Complex zeros of analytic functions,” Computer Phys. Commun. 29, 245–259 (1983).
[Crossref]
L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[Crossref]
L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[Crossref]
H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[Crossref]
[PubMed]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]
J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]
H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[Crossref]
[PubMed]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]
S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[Crossref]
G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]
H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[Crossref]
[PubMed]
J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]
B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[Crossref]
Y. S. Zhou, B. Y. Gu, and H. Y. Wang, “Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics,” Phys. Rev. A 81, 015801 (2010).
[Crossref]
T. Itoh, Numerical Techniques for Microwave and Millimeter Wave Passive Structures (Wiley, 1989).
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[Crossref]
Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref]
[PubMed]
T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyia, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]
E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, 1955).
Q. Zhang, X. Huang, X. Lin, J. Tao, and X. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7555 (2009).
[Crossref]
H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[Crossref]
[PubMed]
F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63, 165103 (2001).
[Crossref]
H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[Crossref]
[PubMed]
H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[Crossref]
[PubMed]
L. C. Botten and R. C. McPhedran, “Completeness and modal expansion methods in diffraction theory,” Opt. Acta 32, 1479–1488 (1985).
[Crossref]
L. C. Botten, M. S. Craig, and R. C. McPhedran, “Complex zeros of analytic functions,” Computer Phys. Commun. 29, 245–259 (1983).
[Crossref]
L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[Crossref]
L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[Crossref]
S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[Crossref]
Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[Crossref]
T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyia, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
J. Pendry, “Playing tricks with light,” Science 285, 1687–1688 (1999).
[Crossref]
J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[Crossref]
J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]
H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63, 165103 (2001).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[Crossref]
[PubMed]
B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]
Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[Crossref]
[PubMed]
S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[Crossref]
G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]
F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63, 165103 (2001).
[Crossref]
H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[Crossref]
[PubMed]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010).
[Crossref]
Y. S. Zhou, B. Y. Gu, and H. Y. Wang, “Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics,” Phys. Rev. A 81, 015801 (2010).
[Crossref]
H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[Crossref]
[PubMed]
P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
[Crossref]
C. Li, Y. S. Zhou, H. Y. Wang, and F. H. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010).
[Crossref]
Y. S. Zhou, B. Y. Gu, and H. Y. Wang, “Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics,” Phys. Rev. A 81, 015801 (2010).
[Crossref]
G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]
T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyia, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]
L. C. Botten, M. S. Craig, and R. C. McPhedran, “Complex zeros of analytic functions,” Computer Phys. Commun. 29, 245–259 (1983).
[Crossref]
M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]
L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[Crossref]
L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[Crossref]
L. C. Botten and R. C. McPhedran, “Completeness and modal expansion methods in diffraction theory,” Opt. Acta 32, 1479–1488 (1985).
[Crossref]
P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
[Crossref]
Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
[Crossref]
[PubMed]
A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Surface plasmon polaritons on metallic surfaces,” Opt. Express 15, 183–197 (2007).
[Crossref]
[PubMed]
Q. Zhang, X. Huang, X. Lin, J. Tao, and X. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7555 (2009).
[Crossref]
H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[Crossref]
[PubMed]
A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, 11318–11323 (2006).
[Crossref]
J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009).
[Crossref]
[PubMed]
A. Houseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008).
[Crossref]
Y. S. Zhou, B. Y. Gu, and H. Y. Wang, “Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics,” Phys. Rev. A 81, 015801 (2010).
[Crossref]
F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63, 165103 (2001).
[Crossref]
J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]
Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[Crossref]
B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007).
[Crossref]
S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[Crossref]
[PubMed]
J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]
Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref]
[PubMed]
J. Pendry, “Playing tricks with light,” Science 285, 1687–1688 (1999).
[Crossref]
H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
The commercially available software developed by Rsoft Design Group http://www.rsoftdesign.com is used for the numerical simulations.
R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, 1966).
T. Itoh, Numerical Techniques for Microwave and Millimeter Wave Passive Structures (Wiley, 1989).
Since the slit is an infinitely long one, the wave source has to be located in Layer 1. This can be easily done in FDTD by setting the coordinates of the source to y = H(0). A “slab mode” (a normal mode of a slab waveguide with characteristics matching the input waveguide, a feature provieded by the RSOFT Fullwave software) is used to excite the SPP mode. However, for the amplitude of the source in FDTD, it should be adjusted to the same value of the normalized SPP mode in Layer 1 as pointed out later. The grid size of the simulation is set as 2.5 nm × 2.5 nm.
E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, 1955).