S. E. Han, “Theory of thermal emission from periodic structures,” Phys. Rev. B 80, 155108 (2009).
[Crossref]
F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16, 5305–5313 (2008).
[Crossref]
[PubMed]
G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[Crossref]
A. Polman, “Plasmonics applied,” Science 322, 868–869 (2008).
[Crossref]
[PubMed]
Y. T. Chang, Y. H. Ye, D. C. Tzuang, Y. T. Wu, C. H. Yang, C. F. Chan, Y. W. Jiang, and S. C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92, 233109 (2008).
[Crossref]
N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).
[Crossref]
S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99, 053906 (2007).
[Crossref]
[PubMed]
X. D. Yu, Y. J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19, 1689–1692 (2007).
[Crossref]
E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]
[PubMed]
Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref]
[PubMed]
M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[Crossref]
[PubMed]
I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72075127 (2005).
[Crossref]
H. Caglayan, I. Bulu, and E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express 13, 1666–1671 (2005).
[Crossref]
[PubMed]
E. Popov, M. Nevière, A.-L. Fehrembach, and N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44, 6141–6154 (2005).
[Crossref]
[PubMed]
L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]
[PubMed]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]
[PubMed]
H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]
[PubMed]
J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature (London) 417, 52–55 (2002).
[Crossref]
[PubMed]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature (London) 416, 61–64 (2002).
[Crossref]
[PubMed]
A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).
[Crossref]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]
T. Erdogan and D. G. Hall, “Circularly symmetric distributed feedback semiconductor laser: an analysis,” J. Appl. Phys. 68, 1435–1444 (1990).
[Crossref]
J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]
[PubMed]
P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature (London) 324, 549–551 (1986).
[Crossref]
F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16, 5305–5313 (2008).
[Crossref]
[PubMed]
M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[Crossref]
[PubMed]
M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[Crossref]
[PubMed]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]
[PubMed]
G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[Crossref]
N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).
[Crossref]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature (London) 417, 52–55 (2002).
[Crossref]
[PubMed]
A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
X. D. Yu, Y. J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19, 1689–1692 (2007).
[Crossref]
Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref]
[PubMed]
M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[Crossref]
[PubMed]
J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature (London) 416, 61–64 (2002).
[Crossref]
[PubMed]
I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72075127 (2005).
[Crossref]
Y. T. Chang, Y. H. Ye, D. C. Tzuang, Y. T. Wu, C. H. Yang, C. F. Chan, Y. W. Jiang, and S. C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92, 233109 (2008).
[Crossref]
Y. T. Chang, Y. H. Ye, D. C. Tzuang, Y. T. Wu, C. H. Yang, C. F. Chan, Y. W. Jiang, and S. C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92, 233109 (2008).
[Crossref]
F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16, 5305–5313 (2008).
[Crossref]
[PubMed]
Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref]
[PubMed]
J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature (London) 416, 61–64 (2002).
[Crossref]
[PubMed]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[Crossref]
[PubMed]
C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).
[Crossref]
G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[Crossref]
N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).
[Crossref]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref]
[PubMed]
L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]
[PubMed]
H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]
[PubMed]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]
[PubMed]
H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]
[PubMed]
C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).
[Crossref]
J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]
[PubMed]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]
[PubMed]
L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]
[PubMed]
H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]
[PubMed]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]
J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]
[PubMed]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature (London) 417, 52–55 (2002).
[Crossref]
[PubMed]
T. Erdogan and D. G. Hall, “Circularly symmetric distributed feedback semiconductor laser: an analysis,” J. Appl. Phys. 68, 1435–1444 (1990).
[Crossref]
J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature (London) 417, 52–55 (2002).
[Crossref]
[PubMed]
Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref]
[PubMed]
X. D. Yu, Y. J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19, 1689–1692 (2007).
[Crossref]
L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]
[PubMed]
H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]
[PubMed]
P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature (London) 324, 549–551 (1986).
[Crossref]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]
A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).
[Crossref]
Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref]
[PubMed]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16, 5305–5313 (2008).
[Crossref]
[PubMed]
Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref]
[PubMed]
M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[Crossref]
[PubMed]
J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature (London) 416, 61–64 (2002).
[Crossref]
[PubMed]
S. E. Han, “Theory of thermal emission from periodic structures,” Phys. Rev. B 80, 155108 (2009).
[Crossref]
S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99, 053906 (2007).
[Crossref]
[PubMed]
G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[Crossref]
N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).
[Crossref]
A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature (London) 324, 549–551 (1986).
[Crossref]
J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature (London) 417, 52–55 (2002).
[Crossref]
[PubMed]
J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett.69, 2772–2775 (1992). A unit cell is discretized by a 80×80 mesh. For 25°C, we used the dielectric function for tungsten from D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, Orlando, 1985).
[Crossref]
[PubMed]
Y. T. Chang, Y. H. Ye, D. C. Tzuang, Y. T. Wu, C. H. Yang, C. F. Chan, Y. W. Jiang, and S. C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92, 233109 (2008).
[Crossref]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref]
[PubMed]
J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature (London) 416, 61–64 (2002).
[Crossref]
[PubMed]
I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72075127 (2005).
[Crossref]
G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[Crossref]
N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).
[Crossref]
F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16, 5305–5313 (2008).
[Crossref]
[PubMed]
M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[Crossref]
[PubMed]
Y. T. Chang, Y. H. Ye, D. C. Tzuang, Y. T. Wu, C. H. Yang, C. F. Chan, Y. W. Jiang, and S. C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92, 233109 (2008).
[Crossref]
X. D. Yu, Y. J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19, 1689–1692 (2007).
[Crossref]
Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref]
[PubMed]
L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]
[PubMed]
H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]
[PubMed]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]
J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature (London) 417, 52–55 (2002).
[Crossref]
[PubMed]
H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]
[PubMed]
A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett.69, 2772–2775 (1992). A unit cell is discretized by a 80×80 mesh. For 25°C, we used the dielectric function for tungsten from D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, Orlando, 1985).
[Crossref]
[PubMed]
J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett.69, 2772–2775 (1992). A unit cell is discretized by a 80×80 mesh. For 25°C, we used the dielectric function for tungsten from D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, Orlando, 1985).
[Crossref]
[PubMed]
J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature (London) 416, 61–64 (2002).
[Crossref]
[PubMed]
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16, 5305–5313 (2008).
[Crossref]
[PubMed]
M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[Crossref]
[PubMed]
H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]
[PubMed]
L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]
[PubMed]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]
[PubMed]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref]
[PubMed]
J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature (London) 416, 61–64 (2002).
[Crossref]
[PubMed]
G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[Crossref]
N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).
[Crossref]
S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99, 053906 (2007).
[Crossref]
[PubMed]
M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[Crossref]
[PubMed]
J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett.69, 2772–2775 (1992). A unit cell is discretized by a 80×80 mesh. For 25°C, we used the dielectric function for tungsten from D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, Orlando, 1985).
[Crossref]
[PubMed]
I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72075127 (2005).
[Crossref]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99, 053906 (2007).
[Crossref]
[PubMed]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]
Y. T. Chang, Y. H. Ye, D. C. Tzuang, Y. T. Wu, C. H. Yang, C. F. Chan, Y. W. Jiang, and S. C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92, 233109 (2008).
[Crossref]
X. D. Yu, Y. J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19, 1689–1692 (2007).
[Crossref]
A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]
Y. T. Chang, Y. H. Ye, D. C. Tzuang, Y. T. Wu, C. H. Yang, C. F. Chan, Y. W. Jiang, and S. C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92, 233109 (2008).
[Crossref]
Y. T. Chang, Y. H. Ye, D. C. Tzuang, Y. T. Wu, C. H. Yang, C. F. Chan, Y. W. Jiang, and S. C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92, 233109 (2008).
[Crossref]
Y. T. Chang, Y. H. Ye, D. C. Tzuang, Y. T. Wu, C. H. Yang, C. F. Chan, Y. W. Jiang, and S. C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92, 233109 (2008).
[Crossref]
X. D. Yu, Y. J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19, 1689–1692 (2007).
[Crossref]
P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature (London) 324, 549–551 (1986).
[Crossref]
X. D. Yu, Y. J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19, 1689–1692 (2007).
[Crossref]
G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[Crossref]
Y. T. Chang, Y. H. Ye, D. C. Tzuang, Y. T. Wu, C. H. Yang, C. F. Chan, Y. W. Jiang, and S. C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92, 233109 (2008).
[Crossref]
M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]
T. Erdogan and D. G. Hall, “Circularly symmetric distributed feedback semiconductor laser: an analysis,” J. Appl. Phys. 68, 1435–1444 (1990).
[Crossref]
A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature (London) 416, 61–64 (2002).
[Crossref]
[PubMed]
J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature (London) 417, 52–55 (2002).
[Crossref]
[PubMed]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]
[PubMed]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]
Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref]
[PubMed]
P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature (London) 324, 549–551 (1986).
[Crossref]
F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16, 5305–5313 (2008).
[Crossref]
[PubMed]
H. Caglayan, I. Bulu, and E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express 13, 1666–1671 (2005).
[Crossref]
[PubMed]
M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[Crossref]
[PubMed]
R. H. Jordan and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19, 427–429 (1994).
[Crossref]
[PubMed]
C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).
[Crossref]
I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72075127 (2005).
[Crossref]
S. E. Han, “Theory of thermal emission from periodic structures,” Phys. Rev. B 80, 155108 (2009).
[Crossref]
N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).
[Crossref]
J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]
[PubMed]
S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99, 053906 (2007).
[Crossref]
[PubMed]
L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]
[PubMed]
H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref]
[PubMed]
E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref]
[PubMed]
A. Polman, “Plasmonics applied,” Science 322, 868–869 (2008).
[Crossref]
[PubMed]
H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett.69, 2772–2775 (1992). A unit cell is discretized by a 80×80 mesh. For 25°C, we used the dielectric function for tungsten from D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, Orlando, 1985).
[Crossref]
[PubMed]