Abstract

We propose a novel method of graded index plastic optical fiber (GI POF) to enhance bandwidth. Recently, it has been reported that perfluorinated GI POF with a double cladding structure had much higher bandwidth than theoretical value. The result of analysis of this fiber indicates that the high-bandwidth property is obtained because higher order modes are attenuated at a core and cladding polymer boundary. In addition, it does not induce large increment of attenuation of lower order modes and bending loss. Then, by adopting the rod-in-tube method, we control differential mode attenuation of PMMA based GI POF, and it is proved that bandwidth of GI POF can be enhanced by utilizing scattering of the core and cladding polymer boundary.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graded-index plastic optical fiber prepared by the coextrusion process

Ryoma Hirose, Makoto Asai, Atsushi Kondo, and Yasuhiro Koike
Appl. Opt. 47(22) 4177-4185 (2008)

Efficient group delay averaging in graded-index plastic optical fiber with microscopic heterogeneous core

Azusa Inoue, Takafumi Sassa, Rei Furukawa, Kenji Makino, Atsushi Kondo, and Yasuhiro Koike
Opt. Express 21(14) 17379-17385 (2013)

Properties of plastic optical fibers

C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito
J. Opt. Soc. Am. B 15(2) 727-739 (1998)

References

  • View by:
  • |
  • |
  • |

  1. J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
    [Crossref]
  2. Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mat. 1, 22–28 (2009).
  3. Y. Koike and T. Ishigure, “High-bandwidth plastic optical fiber for fiber to the display,” J. Lightwave Technol. 24(12), 4541–4553 (2006).
    [Crossref]
  4. Y. Koike, “High-bandwidth graded-index polymer optical fiber,” Polymer (Guildf.) 32(10), 1737–1745 (1991).
    [Crossref]
  5. T. Ishigure, E. Nihei, and Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data links,” Appl. Opt. 35(12), 2048–2053 (1996).
    [Crossref] [PubMed]
  6. T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the Refractive Index Profile in the Graded Index Polymer Optical Fiber for Gigabit Data Transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
    [Crossref]
  7. A. Polley, and S. E. Ralph, “100 m, 40 Gb/s Plastic Optical Fiber Link,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWB2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWB2
  8. S. R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A. E. Willner, and Y. Koike, “Transmission of 40 Gb/s DPSK and OOK at 1.55 μm Through 100 m of Plastic Optical Fiber”, in Proceedings of European Conference and Exhibition on Optical Communication (Brussels, Belgium, 2008), pp. 83–84.
  9. M. Asai, R. Hirose, A. Kondo, and Y. Koike, “High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” J. Lightwave Technol. 25(10), 3062–3067 (2007).
    [Crossref]
  10. Y. Koike, T. Ishigure, and E. Nihei, “High-Bandwidth Graded-Index Polymer Optical Fiber,” J. Lightwave Technol. 13(7), 1475–1489 (1995).
    [Crossref]
  11. R. Olshansky and S. M. Oaks, “Differential mode attenuation measurements in graded-index fibers,” Appl. Opt. 17(11), 1830–1835 (1978).
    [Crossref] [PubMed]
  12. F. W. Ostermayer and W. W. Benson, “Integrating Sphere for Measuring Scattering light Loss in Optical Fiber Waveguides,” Appl. Opt. 13(8), 1900–1902 (1974).
    [Crossref] [PubMed]
  13. J. Meier, W. Lieber, W. Heinlein, W. Groh, P. Herbrechtsmeier, and J. Theis, “Time-domain bandwidth measurements of step-index plastic optical fibers,” Electron. Lett. 23(22), 1208–1209 (1987).
    [Crossref]
  14. R. Hirose, M. Asai, A. Kondo, and Y. Koike, “Graded-index plastic optical fiber prepared by the coextrusion process,” Appl. Opt. 47(22), 4177–4185 (2008).
    [Crossref] [PubMed]
  15. R. Olshansky and D. B. Keck, “Pulse broadening in graded-index optical fibers,” Appl. Opt. 15(2), 483–491 (1976).
    [Crossref] [PubMed]
  16. D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52, 1563 (1973).
  17. Y. Takano, and N. Oota, “Perfluorinated low bending loss GI-POF for home use”, presented at International Conference on Plastic Optical Fibers, Sydney, Australia, 9–11 Sept. 2009.

2009 (1)

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mat. 1, 22–28 (2009).

2008 (1)

2007 (1)

2006 (1)

2001 (1)

J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

1997 (1)

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the Refractive Index Profile in the Graded Index Polymer Optical Fiber for Gigabit Data Transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[Crossref]

1996 (1)

1995 (1)

Y. Koike, T. Ishigure, and E. Nihei, “High-Bandwidth Graded-Index Polymer Optical Fiber,” J. Lightwave Technol. 13(7), 1475–1489 (1995).
[Crossref]

1991 (1)

Y. Koike, “High-bandwidth graded-index polymer optical fiber,” Polymer (Guildf.) 32(10), 1737–1745 (1991).
[Crossref]

1987 (1)

J. Meier, W. Lieber, W. Heinlein, W. Groh, P. Herbrechtsmeier, and J. Theis, “Time-domain bandwidth measurements of step-index plastic optical fibers,” Electron. Lett. 23(22), 1208–1209 (1987).
[Crossref]

1978 (1)

1976 (1)

1974 (1)

1973 (1)

D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52, 1563 (1973).

Arrue, J.

J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

Asai, M.

Benson, W. W.

Gloge, D.

D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52, 1563 (1973).

Groh, W.

J. Meier, W. Lieber, W. Heinlein, W. Groh, P. Herbrechtsmeier, and J. Theis, “Time-domain bandwidth measurements of step-index plastic optical fibers,” Electron. Lett. 23(22), 1208–1209 (1987).
[Crossref]

Heinlein, W.

J. Meier, W. Lieber, W. Heinlein, W. Groh, P. Herbrechtsmeier, and J. Theis, “Time-domain bandwidth measurements of step-index plastic optical fibers,” Electron. Lett. 23(22), 1208–1209 (1987).
[Crossref]

Herbrechtsmeier, P.

J. Meier, W. Lieber, W. Heinlein, W. Groh, P. Herbrechtsmeier, and J. Theis, “Time-domain bandwidth measurements of step-index plastic optical fibers,” Electron. Lett. 23(22), 1208–1209 (1987).
[Crossref]

Hirose, R.

Ishigure, T.

Y. Koike and T. Ishigure, “High-bandwidth plastic optical fiber for fiber to the display,” J. Lightwave Technol. 24(12), 4541–4553 (2006).
[Crossref]

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the Refractive Index Profile in the Graded Index Polymer Optical Fiber for Gigabit Data Transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[Crossref]

T. Ishigure, E. Nihei, and Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data links,” Appl. Opt. 35(12), 2048–2053 (1996).
[Crossref] [PubMed]

Y. Koike, T. Ishigure, and E. Nihei, “High-Bandwidth Graded-Index Polymer Optical Fiber,” J. Lightwave Technol. 13(7), 1475–1489 (1995).
[Crossref]

Keck, D. B.

Koike, Y.

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mat. 1, 22–28 (2009).

R. Hirose, M. Asai, A. Kondo, and Y. Koike, “Graded-index plastic optical fiber prepared by the coextrusion process,” Appl. Opt. 47(22), 4177–4185 (2008).
[Crossref] [PubMed]

M. Asai, R. Hirose, A. Kondo, and Y. Koike, “High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” J. Lightwave Technol. 25(10), 3062–3067 (2007).
[Crossref]

Y. Koike and T. Ishigure, “High-bandwidth plastic optical fiber for fiber to the display,” J. Lightwave Technol. 24(12), 4541–4553 (2006).
[Crossref]

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the Refractive Index Profile in the Graded Index Polymer Optical Fiber for Gigabit Data Transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[Crossref]

T. Ishigure, E. Nihei, and Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data links,” Appl. Opt. 35(12), 2048–2053 (1996).
[Crossref] [PubMed]

Y. Koike, T. Ishigure, and E. Nihei, “High-Bandwidth Graded-Index Polymer Optical Fiber,” J. Lightwave Technol. 13(7), 1475–1489 (1995).
[Crossref]

Y. Koike, “High-bandwidth graded-index polymer optical fiber,” Polymer (Guildf.) 32(10), 1737–1745 (1991).
[Crossref]

Kondo, A.

Lieber, W.

J. Meier, W. Lieber, W. Heinlein, W. Groh, P. Herbrechtsmeier, and J. Theis, “Time-domain bandwidth measurements of step-index plastic optical fibers,” Electron. Lett. 23(22), 1208–1209 (1987).
[Crossref]

Marcatili, E. A. J.

D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52, 1563 (1973).

Meier, J.

J. Meier, W. Lieber, W. Heinlein, W. Groh, P. Herbrechtsmeier, and J. Theis, “Time-domain bandwidth measurements of step-index plastic optical fibers,” Electron. Lett. 23(22), 1208–1209 (1987).
[Crossref]

Nihei, E.

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the Refractive Index Profile in the Graded Index Polymer Optical Fiber for Gigabit Data Transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[Crossref]

T. Ishigure, E. Nihei, and Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data links,” Appl. Opt. 35(12), 2048–2053 (1996).
[Crossref] [PubMed]

Y. Koike, T. Ishigure, and E. Nihei, “High-Bandwidth Graded-Index Polymer Optical Fiber,” J. Lightwave Technol. 13(7), 1475–1489 (1995).
[Crossref]

Nyu, T.

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the Refractive Index Profile in the Graded Index Polymer Optical Fiber for Gigabit Data Transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[Crossref]

Oaks, S. M.

Olshansky, R.

Ostermayer, F. W.

Satoh, M.

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the Refractive Index Profile in the Graded Index Polymer Optical Fiber for Gigabit Data Transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[Crossref]

Takanashi, O.

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the Refractive Index Profile in the Graded Index Polymer Optical Fiber for Gigabit Data Transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[Crossref]

Theis, J.

J. Meier, W. Lieber, W. Heinlein, W. Groh, P. Herbrechtsmeier, and J. Theis, “Time-domain bandwidth measurements of step-index plastic optical fibers,” Electron. Lett. 23(22), 1208–1209 (1987).
[Crossref]

Yamazaki, S.

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the Refractive Index Profile in the Graded Index Polymer Optical Fiber for Gigabit Data Transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[Crossref]

Zubia, J.

J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

Appl. Opt. (5)

Bell Syst. Tech. J. (1)

D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52, 1563 (1973).

Electron. Lett. (1)

J. Meier, W. Lieber, W. Heinlein, W. Groh, P. Herbrechtsmeier, and J. Theis, “Time-domain bandwidth measurements of step-index plastic optical fibers,” Electron. Lett. 23(22), 1208–1209 (1987).
[Crossref]

J. Lightwave Technol. (4)

Y. Koike and T. Ishigure, “High-bandwidth plastic optical fiber for fiber to the display,” J. Lightwave Technol. 24(12), 4541–4553 (2006).
[Crossref]

M. Asai, R. Hirose, A. Kondo, and Y. Koike, “High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” J. Lightwave Technol. 25(10), 3062–3067 (2007).
[Crossref]

Y. Koike, T. Ishigure, and E. Nihei, “High-Bandwidth Graded-Index Polymer Optical Fiber,” J. Lightwave Technol. 13(7), 1475–1489 (1995).
[Crossref]

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the Refractive Index Profile in the Graded Index Polymer Optical Fiber for Gigabit Data Transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[Crossref]

NPG Asia Mat. (1)

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mat. 1, 22–28 (2009).

Opt. Fiber Technol. (1)

J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

Polymer (Guildf.) (1)

Y. Koike, “High-bandwidth graded-index polymer optical fiber,” Polymer (Guildf.) 32(10), 1737–1745 (1991).
[Crossref]

Other (3)

A. Polley, and S. E. Ralph, “100 m, 40 Gb/s Plastic Optical Fiber Link,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWB2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWB2

S. R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A. E. Willner, and Y. Koike, “Transmission of 40 Gb/s DPSK and OOK at 1.55 μm Through 100 m of Plastic Optical Fiber”, in Proceedings of European Conference and Exhibition on Optical Communication (Brussels, Belgium, 2008), pp. 83–84.

Y. Takano, and N. Oota, “Perfluorinated low bending loss GI-POF for home use”, presented at International Conference on Plastic Optical Fibers, Sydney, Australia, 9–11 Sept. 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic representation of rod-in-tube method.
Fig. 2
Fig. 2 Refractive index profile of PF GI POF with double cladding structure.
Fig. 3
Fig. 3 Differential mode attenuation of PF GI POF with double cladding structure.
Fig. 4
Fig. 4 Comparison of FFP of PF GI POF with double cladding structure between before and after transmission.
Fig. 5
Fig. 5 Comparison of transmitted and scattered light intensity of PF GI POF with double cladding structure.
Fig. 6
Fig. 6 Schematic of formation process of refractive index profile in the co-extrusion process.
Fig. 7
Fig. 7 Comparison of DMA between GI POF fabricated by the rod-in-tube method and the interfacial gel polymerization method.
Fig. 8
Fig. 8 Transmitted and scattered light intensity of GI POF fabricated by the rod-in-tube method.
Fig. 9
Fig. 9 Comparison between NFP and refractive index profile of PMMA based GI POF fabricated by the rod-in-tube method.
Fig. 10
Fig. 10 Comparison of pulse width after 50-m transmission between GI POF fabricated by the rod-in tube method(g=4.3) and fabricated by the interfacial gel polymerization method (g=3.9).
Fig. 11
Fig. 11 Comparison of Bandwidth of GI POF fabricated by the rod-in-tube method, the interfacial gel polymerization method and calculated.
Fig. 12
Fig. 12 Comparison of bending loss of GI POF fabricated by the rod-in-tube method and the interfacial gel polymerization method.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = n 1 [ 1 2 Δ ( r a ) g ] 1 2
Δ = n 1 2 n 2 2 2 n 1 2

Metrics