Abstract

Highly dispersed and uniform Fe2O3 nanoparticles (NPs) have been incorporated into the pore channels of SBA-15 mesoporous silica thin films (MSTFs). And such Fe2O3 NPs incorporated MSTFs did not show detectable nonlinear optical (NLO) signals at off-resonance wavelength 1064 nm by Z-scan technique. However after a vacuum heat treatment at 800 °C for 1 h under 6 T magnetic field, the Fe2O3 NPs incorporated MSTFs with very low Fe content (0.8~1.5 at.%) presented distinctive NLO signals with χ(3) value in an order of 10−10 esu. We proposed the physical reason for the NLO property generation to be the magnetic domain orientation of the iron oxide NPs incorporated within the pore channels of the MSTFs by the magnetic field heat treatment.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Preparation and third-order optical nonlinearity of gold nanoparticles incorporated mesoporous TiO2 thin films

Fangming Cui, Zile Hua, Qianjun He, Jiangtian Li, Limin Guo, Xiangzhi Cui, Peng Jiang, Chenyang Wei, Weimin Huang, Wenbo Bu, and Jianlin Shi
J. Opt. Soc. Am. B 26(1) 107-112 (2009)

Nonlinear optical properties of Fe/BaTiO3 composite thin films prepared by two-target pulsed-laser deposition

Weitian Wang, Guang Yang, Zhenghao Chen, Yueliang Zhou, Huibin Lu, and Guozhen Yang
J. Opt. Soc. Am. B 20(6) 1342-1345 (2003)

Third-order nonlinear optical properties of sol–gel-derived V2O5, Nb2O5, and Ta2O5 thin films

Tadanori Hashimoto and Toshinobu Yoko
Appl. Opt. 34(16) 2941-2948 (1995)

References

  • View by:
  • |
  • |
  • |

  1. D. Ricard, Ph. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10(10), 511–513 (1985).
    [Crossref] [PubMed]
  2. M. J. Bloemer, J. W. Haus, and P. R. Ashley, “Degenerate four-wave mixing in colloidal gold as a function of particle-size,” J. Opt. Soc. Am. B 7(5), 790 (1990).
    [Crossref]
  3. K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties,” J. Appl. Phys. 75(6), 3075 (1994).
    [Crossref]
  4. J. Gu, J. Shi, G. You, L. Xiong, S. Qian, Z. Hua, and H. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. 17(5), 557–560 (2005).
    [Crossref]
  5. M. Ando, K. Kadono, M. Haluta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
    [Crossref]
  6. T. Hashimoto, T. Yamada, and T. Yoko, “Third-order nonlinear optical properties of sol–gel derived α- Fe2O3, γ- Fe2O3, and Fe3O4 thin films,” J. Appl. Phys. 80(6), 3184 (1996).
    [Crossref]
  7. H. Zhou, A. Mito, D. Kundu, and I. Honma, “Nonlinear optical susceptibility of Fe2O3 thin film synthesized by a modified sol-gel method,” J. Sol-Gel Sci. Technol. 19(1/3), 539–541 (2000).
    [Crossref]
  8. B. Yu, C. Zhu, and F. Gan, “Large nonlinear optical properties of Fe2O3 nanoparticles,” Physica E 8(4), 360–364 (2000).
    [Crossref]
  9. B. Yu, C. Zhu, F. Gan, X. Wu, G. Zhang, G. Tang, and W. Chen, “Optical nonlinearities of Fe2O3 nanoparticles investigated by Z-scan technique,” Opt. Mater. 8(4), 249–254 (1997).
    [Crossref]
  10. J. Gu, J. Shi, L. Xiong, H. Chen, and M. Ruan, “A new strategy to incorporate highly dispersed nanoparticles into the pore channels of mesoporous silica thin films,” Microporous Mesoporous Mater. 74(1-3), 199–204 (2004).
    [Crossref]
  11. P. Derango, M. Lees, P. Lejay, A. Sulplice, R. Tounier, M. Ingold, P. Germi, and M. Pernet, “Texturing of magnetic materials at high temperature by solidification in a magnetic field,” Nature 349(6312), 770–772 (1991).
    [Crossref]
  12. S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410(6831), 908–910 (2001).
    [Crossref] [PubMed]
  13. F. Lévy, I. Sheikin, B. Grenier, and A. D. Huxley, “Magnetic field-induced superconductivity in the ferromagnet URhGe,” Science 309(5739), 1343–1346 (2005).
    [Crossref] [PubMed]
  14. H. Wang, X. Ma, Y. He, S. Mitani, and M. Motokawa, “Enhancement in ordering of FePt films by magnetic field annealing,” Appl. Phys. Lett. 85(12), 2304 (2004).
    [Crossref]
  15. D. Zhao, P. Yang, N. Melosh, J. Feng, B. Chmelka, and G. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. 10(16), 1380–1385 (1998).
    [Crossref]
  16. F. Cui, Z. Hua, X. Cui, L. Guo, C. Wei, W. Bu, and J. Shi, “Au nanoparticles incorporated mesoporous silica thin films with a high Au content: preparation and third-order optical non-linearity,” Dalton Trans. (15): 2679–2682 (2009).
    [Crossref] [PubMed]
  17. D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, “Structure and electronic properties of solid acids based on tungsten oxide nanostructures,” J. Phys. Chem. B 103(4), 630–640 (1999).
    [Crossref]
  18. R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007).
    [Crossref]
  19. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Steyland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  20. R. Ganeev, A. Ryasnyansky, A. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glass in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
    [Crossref]
  21. H. S. Kim, M. H. Lee, N. C. Jeong, S. M. Lee, B. K. Rhee, and K. B. Yoon, “Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots,” J. Am. Chem. Soc. 128(47), 15070–15071 (2006).
    [Crossref] [PubMed]
  22. S. Trudel, C. Jones, and R. Hill, “Magnetic properties of nanocrystalline iron oxide/amorphous manganese oxide nanocomposite thin films prepared via photochemical metal-organic deposition,” J. Mater. Chem. 17(21), 2206 (2007).
    [Crossref]
  23. A. Fuertes, M. Sevilla, S. Alvarez, T. Valdes-Solis, and P. Tartaj, “Templated synthesis of mesoporous superparamagnetic polymers,” Adv. Funct. Mater. 17(14), 2321–2327 (2007).
    [Crossref]
  24. Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. Furlani, and P. Prasad, “Field-directed self-assembly of magnetic nanoparticles,” J. Phys. Chem. B 108(11), 3380–3383 (2004).
    [Crossref]
  25. J. Lin, W. Zhou, A. Kumbhar, J. Fang, E. Carpenter, and C. O’Connor, “Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly,” J. Solid State Chem. 159(1), 26–31 (2001).
    [Crossref]
  26. M. A. Correa-Duarte, M. Grzelczak, V. Salgueiriño-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B 109(41), 19060–19063 (2005).
    [Crossref]

2009 (1)

F. Cui, Z. Hua, X. Cui, L. Guo, C. Wei, W. Bu, and J. Shi, “Au nanoparticles incorporated mesoporous silica thin films with a high Au content: preparation and third-order optical non-linearity,” Dalton Trans. (15): 2679–2682 (2009).
[Crossref] [PubMed]

2007 (3)

R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007).
[Crossref]

S. Trudel, C. Jones, and R. Hill, “Magnetic properties of nanocrystalline iron oxide/amorphous manganese oxide nanocomposite thin films prepared via photochemical metal-organic deposition,” J. Mater. Chem. 17(21), 2206 (2007).
[Crossref]

A. Fuertes, M. Sevilla, S. Alvarez, T. Valdes-Solis, and P. Tartaj, “Templated synthesis of mesoporous superparamagnetic polymers,” Adv. Funct. Mater. 17(14), 2321–2327 (2007).
[Crossref]

2006 (1)

H. S. Kim, M. H. Lee, N. C. Jeong, S. M. Lee, B. K. Rhee, and K. B. Yoon, “Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots,” J. Am. Chem. Soc. 128(47), 15070–15071 (2006).
[Crossref] [PubMed]

2005 (3)

M. A. Correa-Duarte, M. Grzelczak, V. Salgueiriño-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B 109(41), 19060–19063 (2005).
[Crossref]

F. Lévy, I. Sheikin, B. Grenier, and A. D. Huxley, “Magnetic field-induced superconductivity in the ferromagnet URhGe,” Science 309(5739), 1343–1346 (2005).
[Crossref] [PubMed]

J. Gu, J. Shi, G. You, L. Xiong, S. Qian, Z. Hua, and H. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. 17(5), 557–560 (2005).
[Crossref]

2004 (3)

H. Wang, X. Ma, Y. He, S. Mitani, and M. Motokawa, “Enhancement in ordering of FePt films by magnetic field annealing,” Appl. Phys. Lett. 85(12), 2304 (2004).
[Crossref]

J. Gu, J. Shi, L. Xiong, H. Chen, and M. Ruan, “A new strategy to incorporate highly dispersed nanoparticles into the pore channels of mesoporous silica thin films,” Microporous Mesoporous Mater. 74(1-3), 199–204 (2004).
[Crossref]

Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. Furlani, and P. Prasad, “Field-directed self-assembly of magnetic nanoparticles,” J. Phys. Chem. B 108(11), 3380–3383 (2004).
[Crossref]

2003 (1)

R. Ganeev, A. Ryasnyansky, A. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glass in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
[Crossref]

2001 (2)

S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410(6831), 908–910 (2001).
[Crossref] [PubMed]

J. Lin, W. Zhou, A. Kumbhar, J. Fang, E. Carpenter, and C. O’Connor, “Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly,” J. Solid State Chem. 159(1), 26–31 (2001).
[Crossref]

2000 (2)

H. Zhou, A. Mito, D. Kundu, and I. Honma, “Nonlinear optical susceptibility of Fe2O3 thin film synthesized by a modified sol-gel method,” J. Sol-Gel Sci. Technol. 19(1/3), 539–541 (2000).
[Crossref]

B. Yu, C. Zhu, and F. Gan, “Large nonlinear optical properties of Fe2O3 nanoparticles,” Physica E 8(4), 360–364 (2000).
[Crossref]

1999 (1)

D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, “Structure and electronic properties of solid acids based on tungsten oxide nanostructures,” J. Phys. Chem. B 103(4), 630–640 (1999).
[Crossref]

1998 (1)

D. Zhao, P. Yang, N. Melosh, J. Feng, B. Chmelka, and G. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. 10(16), 1380–1385 (1998).
[Crossref]

1997 (1)

B. Yu, C. Zhu, F. Gan, X. Wu, G. Zhang, G. Tang, and W. Chen, “Optical nonlinearities of Fe2O3 nanoparticles investigated by Z-scan technique,” Opt. Mater. 8(4), 249–254 (1997).
[Crossref]

1996 (1)

T. Hashimoto, T. Yamada, and T. Yoko, “Third-order nonlinear optical properties of sol–gel derived α- Fe2O3, γ- Fe2O3, and Fe3O4 thin films,” J. Appl. Phys. 80(6), 3184 (1996).
[Crossref]

1995 (1)

M. Ando, K. Kadono, M. Haluta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

1994 (1)

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties,” J. Appl. Phys. 75(6), 3075 (1994).
[Crossref]

1991 (1)

P. Derango, M. Lees, P. Lejay, A. Sulplice, R. Tounier, M. Ingold, P. Germi, and M. Pernet, “Texturing of magnetic materials at high temperature by solidification in a magnetic field,” Nature 349(6312), 770–772 (1991).
[Crossref]

1990 (2)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Steyland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

M. J. Bloemer, J. W. Haus, and P. R. Ashley, “Degenerate four-wave mixing in colloidal gold as a function of particle-size,” J. Opt. Soc. Am. B 7(5), 790 (1990).
[Crossref]

1985 (1)

Alvarez, S.

A. Fuertes, M. Sevilla, S. Alvarez, T. Valdes-Solis, and P. Tartaj, “Templated synthesis of mesoporous superparamagnetic polymers,” Adv. Funct. Mater. 17(14), 2321–2327 (2007).
[Crossref]

Ando, M.

M. Ando, K. Kadono, M. Haluta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

Ashley, P. R.

Barton, D. G.

D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, “Structure and electronic properties of solid acids based on tungsten oxide nanostructures,” J. Phys. Chem. B 103(4), 630–640 (1999).
[Crossref]

Bloemer, M. J.

Bu, W.

F. Cui, Z. Hua, X. Cui, L. Guo, C. Wei, W. Bu, and J. Shi, “Au nanoparticles incorporated mesoporous silica thin films with a high Au content: preparation and third-order optical non-linearity,” Dalton Trans. (15): 2679–2682 (2009).
[Crossref] [PubMed]

Carpenter, E.

J. Lin, W. Zhou, A. Kumbhar, J. Fang, E. Carpenter, and C. O’Connor, “Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly,” J. Solid State Chem. 159(1), 26–31 (2001).
[Crossref]

Chayahara, A.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties,” J. Appl. Phys. 75(6), 3075 (1994).
[Crossref]

Chen, H.

J. Gu, J. Shi, G. You, L. Xiong, S. Qian, Z. Hua, and H. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. 17(5), 557–560 (2005).
[Crossref]

J. Gu, J. Shi, L. Xiong, H. Chen, and M. Ruan, “A new strategy to incorporate highly dispersed nanoparticles into the pore channels of mesoporous silica thin films,” Microporous Mesoporous Mater. 74(1-3), 199–204 (2004).
[Crossref]

Chen, W.

B. Yu, C. Zhu, F. Gan, X. Wu, G. Zhang, G. Tang, and W. Chen, “Optical nonlinearities of Fe2O3 nanoparticles investigated by Z-scan technique,” Opt. Mater. 8(4), 249–254 (1997).
[Crossref]

Cheon, M.

Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. Furlani, and P. Prasad, “Field-directed self-assembly of magnetic nanoparticles,” J. Phys. Chem. B 108(11), 3380–3383 (2004).
[Crossref]

Chmelka, B.

D. Zhao, P. Yang, N. Melosh, J. Feng, B. Chmelka, and G. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. 10(16), 1380–1385 (1998).
[Crossref]

Correa-Duarte, M. A.

M. A. Correa-Duarte, M. Grzelczak, V. Salgueiriño-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B 109(41), 19060–19063 (2005).
[Crossref]

Cui, F.

F. Cui, Z. Hua, X. Cui, L. Guo, C. Wei, W. Bu, and J. Shi, “Au nanoparticles incorporated mesoporous silica thin films with a high Au content: preparation and third-order optical non-linearity,” Dalton Trans. (15): 2679–2682 (2009).
[Crossref] [PubMed]

Cui, X.

F. Cui, Z. Hua, X. Cui, L. Guo, C. Wei, W. Bu, and J. Shi, “Au nanoparticles incorporated mesoporous silica thin films with a high Au content: preparation and third-order optical non-linearity,” Dalton Trans. (15): 2679–2682 (2009).
[Crossref] [PubMed]

Derango, P.

P. Derango, M. Lees, P. Lejay, A. Sulplice, R. Tounier, M. Ingold, P. Germi, and M. Pernet, “Texturing of magnetic materials at high temperature by solidification in a magnetic field,” Nature 349(6312), 770–772 (1991).
[Crossref]

Diaz, R.

M. A. Correa-Duarte, M. Grzelczak, V. Salgueiriño-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B 109(41), 19060–19063 (2005).
[Crossref]

Fang, J.

J. Lin, W. Zhou, A. Kumbhar, J. Fang, E. Carpenter, and C. O’Connor, “Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly,” J. Solid State Chem. 159(1), 26–31 (2001).
[Crossref]

Farle, M.

M. A. Correa-Duarte, M. Grzelczak, V. Salgueiriño-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B 109(41), 19060–19063 (2005).
[Crossref]

Feng, J.

D. Zhao, P. Yang, N. Melosh, J. Feng, B. Chmelka, and G. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. 10(16), 1380–1385 (1998).
[Crossref]

Flytzanis, C.

Fuertes, A.

A. Fuertes, M. Sevilla, S. Alvarez, T. Valdes-Solis, and P. Tartaj, “Templated synthesis of mesoporous superparamagnetic polymers,” Adv. Funct. Mater. 17(14), 2321–2327 (2007).
[Crossref]

Fujii, K.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties,” J. Appl. Phys. 75(6), 3075 (1994).
[Crossref]

Fukumi, K.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties,” J. Appl. Phys. 75(6), 3075 (1994).
[Crossref]

Furlani, E.

Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. Furlani, and P. Prasad, “Field-directed self-assembly of magnetic nanoparticles,” J. Phys. Chem. B 108(11), 3380–3383 (2004).
[Crossref]

Gan, F.

B. Yu, C. Zhu, and F. Gan, “Large nonlinear optical properties of Fe2O3 nanoparticles,” Physica E 8(4), 360–364 (2000).
[Crossref]

B. Yu, C. Zhu, F. Gan, X. Wu, G. Zhang, G. Tang, and W. Chen, “Optical nonlinearities of Fe2O3 nanoparticles investigated by Z-scan technique,” Opt. Mater. 8(4), 249–254 (1997).
[Crossref]

Ganeev, R.

R. Ganeev, A. Ryasnyansky, A. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glass in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
[Crossref]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007).
[Crossref]

Germi, P.

P. Derango, M. Lees, P. Lejay, A. Sulplice, R. Tounier, M. Ingold, P. Germi, and M. Pernet, “Texturing of magnetic materials at high temperature by solidification in a magnetic field,” Nature 349(6312), 770–772 (1991).
[Crossref]

Giersig, M.

M. A. Correa-Duarte, M. Grzelczak, V. Salgueiriño-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B 109(41), 19060–19063 (2005).
[Crossref]

Grenier, B.

F. Lévy, I. Sheikin, B. Grenier, and A. D. Huxley, “Magnetic field-induced superconductivity in the ferromagnet URhGe,” Science 309(5739), 1343–1346 (2005).
[Crossref] [PubMed]

Grzelczak, M.

M. A. Correa-Duarte, M. Grzelczak, V. Salgueiriño-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B 109(41), 19060–19063 (2005).
[Crossref]

Gu, J.

J. Gu, J. Shi, G. You, L. Xiong, S. Qian, Z. Hua, and H. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. 17(5), 557–560 (2005).
[Crossref]

J. Gu, J. Shi, L. Xiong, H. Chen, and M. Ruan, “A new strategy to incorporate highly dispersed nanoparticles into the pore channels of mesoporous silica thin films,” Microporous Mesoporous Mater. 74(1-3), 199–204 (2004).
[Crossref]

Guo, L.

F. Cui, Z. Hua, X. Cui, L. Guo, C. Wei, W. Bu, and J. Shi, “Au nanoparticles incorporated mesoporous silica thin films with a high Au content: preparation and third-order optical non-linearity,” Dalton Trans. (15): 2679–2682 (2009).
[Crossref] [PubMed]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Steyland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Haluta, M.

M. Ando, K. Kadono, M. Haluta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

Hashimoto, T.

T. Hashimoto, T. Yamada, and T. Yoko, “Third-order nonlinear optical properties of sol–gel derived α- Fe2O3, γ- Fe2O3, and Fe3O4 thin films,” J. Appl. Phys. 80(6), 3184 (1996).
[Crossref]

Haus, J. W.

Hayakawa, J.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties,” J. Appl. Phys. 75(6), 3075 (1994).
[Crossref]

He, Y.

H. Wang, X. Ma, Y. He, S. Mitani, and M. Motokawa, “Enhancement in ordering of FePt films by magnetic field annealing,” Appl. Phys. Lett. 85(12), 2304 (2004).
[Crossref]

Hill, R.

S. Trudel, C. Jones, and R. Hill, “Magnetic properties of nanocrystalline iron oxide/amorphous manganese oxide nanocomposite thin films prepared via photochemical metal-organic deposition,” J. Mater. Chem. 17(21), 2206 (2007).
[Crossref]

Honma, I.

H. Zhou, A. Mito, D. Kundu, and I. Honma, “Nonlinear optical susceptibility of Fe2O3 thin film synthesized by a modified sol-gel method,” J. Sol-Gel Sci. Technol. 19(1/3), 539–541 (2000).
[Crossref]

Horino, Y.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties,” J. Appl. Phys. 75(6), 3075 (1994).
[Crossref]

Hua, Z.

F. Cui, Z. Hua, X. Cui, L. Guo, C. Wei, W. Bu, and J. Shi, “Au nanoparticles incorporated mesoporous silica thin films with a high Au content: preparation and third-order optical non-linearity,” Dalton Trans. (15): 2679–2682 (2009).
[Crossref] [PubMed]

J. Gu, J. Shi, G. You, L. Xiong, S. Qian, Z. Hua, and H. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. 17(5), 557–560 (2005).
[Crossref]

Huxley, A. D.

F. Lévy, I. Sheikin, B. Grenier, and A. D. Huxley, “Magnetic field-induced superconductivity in the ferromagnet URhGe,” Science 309(5739), 1343–1346 (2005).
[Crossref] [PubMed]

Iglesia, E.

D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, “Structure and electronic properties of solid acids based on tungsten oxide nanostructures,” J. Phys. Chem. B 103(4), 630–640 (1999).
[Crossref]

Ingold, M.

P. Derango, M. Lees, P. Lejay, A. Sulplice, R. Tounier, M. Ingold, P. Germi, and M. Pernet, “Texturing of magnetic materials at high temperature by solidification in a magnetic field,” Nature 349(6312), 770–772 (1991).
[Crossref]

Jeong, N. C.

H. S. Kim, M. H. Lee, N. C. Jeong, S. M. Lee, B. K. Rhee, and K. B. Yoon, “Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots,” J. Am. Chem. Soc. 128(47), 15070–15071 (2006).
[Crossref] [PubMed]

Jones, C.

S. Trudel, C. Jones, and R. Hill, “Magnetic properties of nanocrystalline iron oxide/amorphous manganese oxide nanocomposite thin films prepared via photochemical metal-organic deposition,” J. Mater. Chem. 17(21), 2206 (2007).
[Crossref]

Kadono, K.

M. Ando, K. Kadono, M. Haluta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties,” J. Appl. Phys. 75(6), 3075 (1994).
[Crossref]

Kim, H. S.

H. S. Kim, M. H. Lee, N. C. Jeong, S. M. Lee, B. K. Rhee, and K. B. Yoon, “Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots,” J. Am. Chem. Soc. 128(47), 15070–15071 (2006).
[Crossref] [PubMed]

Kobayashi, A.

S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410(6831), 908–910 (2001).
[Crossref] [PubMed]

Kobayashi, H.

S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410(6831), 908–910 (2001).
[Crossref] [PubMed]

Kumbhar, A.

J. Lin, W. Zhou, A. Kumbhar, J. Fang, E. Carpenter, and C. O’Connor, “Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly,” J. Solid State Chem. 159(1), 26–31 (2001).
[Crossref]

Kundu, D.

H. Zhou, A. Mito, D. Kundu, and I. Honma, “Nonlinear optical susceptibility of Fe2O3 thin film synthesized by a modified sol-gel method,” J. Sol-Gel Sci. Technol. 19(1/3), 539–541 (2000).
[Crossref]

Lee, M. H.

H. S. Kim, M. H. Lee, N. C. Jeong, S. M. Lee, B. K. Rhee, and K. B. Yoon, “Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots,” J. Am. Chem. Soc. 128(47), 15070–15071 (2006).
[Crossref] [PubMed]

Lee, S. M.

H. S. Kim, M. H. Lee, N. C. Jeong, S. M. Lee, B. K. Rhee, and K. B. Yoon, “Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots,” J. Am. Chem. Soc. 128(47), 15070–15071 (2006).
[Crossref] [PubMed]

Lees, M.

P. Derango, M. Lees, P. Lejay, A. Sulplice, R. Tounier, M. Ingold, P. Germi, and M. Pernet, “Texturing of magnetic materials at high temperature by solidification in a magnetic field,” Nature 349(6312), 770–772 (1991).
[Crossref]

Lejay, P.

P. Derango, M. Lees, P. Lejay, A. Sulplice, R. Tounier, M. Ingold, P. Germi, and M. Pernet, “Texturing of magnetic materials at high temperature by solidification in a magnetic field,” Nature 349(6312), 770–772 (1991).
[Crossref]

Lévy, F.

F. Lévy, I. Sheikin, B. Grenier, and A. D. Huxley, “Magnetic field-induced superconductivity in the ferromagnet URhGe,” Science 309(5739), 1343–1346 (2005).
[Crossref] [PubMed]

Lin, J.

J. Lin, W. Zhou, A. Kumbhar, J. Fang, E. Carpenter, and C. O’Connor, “Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly,” J. Solid State Chem. 159(1), 26–31 (2001).
[Crossref]

Liz-Marzan, L. M.

M. A. Correa-Duarte, M. Grzelczak, V. Salgueiriño-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B 109(41), 19060–19063 (2005).
[Crossref]

Luo, H.

Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. Furlani, and P. Prasad, “Field-directed self-assembly of magnetic nanoparticles,” J. Phys. Chem. B 108(11), 3380–3383 (2004).
[Crossref]

Ma, X.

H. Wang, X. Ma, Y. He, S. Mitani, and M. Motokawa, “Enhancement in ordering of FePt films by magnetic field annealing,” Appl. Phys. Lett. 85(12), 2304 (2004).
[Crossref]

Melosh, N.

D. Zhao, P. Yang, N. Melosh, J. Feng, B. Chmelka, and G. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. 10(16), 1380–1385 (1998).
[Crossref]

Mitani, S.

H. Wang, X. Ma, Y. He, S. Mitani, and M. Motokawa, “Enhancement in ordering of FePt films by magnetic field annealing,” Appl. Phys. Lett. 85(12), 2304 (2004).
[Crossref]

Mito, A.

H. Zhou, A. Mito, D. Kundu, and I. Honma, “Nonlinear optical susceptibility of Fe2O3 thin film synthesized by a modified sol-gel method,” J. Sol-Gel Sci. Technol. 19(1/3), 539–541 (2000).
[Crossref]

Miya, M.

M. Ando, K. Kadono, M. Haluta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties,” J. Appl. Phys. 75(6), 3075 (1994).
[Crossref]

Motokawa, M.

H. Wang, X. Ma, Y. He, S. Mitani, and M. Motokawa, “Enhancement in ordering of FePt films by magnetic field annealing,” Appl. Phys. Lett. 85(12), 2304 (2004).
[Crossref]

O’Connor, C.

J. Lin, W. Zhou, A. Kumbhar, J. Fang, E. Carpenter, and C. O’Connor, “Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly,” J. Solid State Chem. 159(1), 26–31 (2001).
[Crossref]

Pernet, M.

P. Derango, M. Lees, P. Lejay, A. Sulplice, R. Tounier, M. Ingold, P. Germi, and M. Pernet, “Texturing of magnetic materials at high temperature by solidification in a magnetic field,” Nature 349(6312), 770–772 (1991).
[Crossref]

Prasad, P.

Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. Furlani, and P. Prasad, “Field-directed self-assembly of magnetic nanoparticles,” J. Phys. Chem. B 108(11), 3380–3383 (2004).
[Crossref]

Qian, S.

J. Gu, J. Shi, G. You, L. Xiong, S. Qian, Z. Hua, and H. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. 17(5), 557–560 (2005).
[Crossref]

Rhee, B. K.

H. S. Kim, M. H. Lee, N. C. Jeong, S. M. Lee, B. K. Rhee, and K. B. Yoon, “Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots,” J. Am. Chem. Soc. 128(47), 15070–15071 (2006).
[Crossref] [PubMed]

Ricard, D.

Roussignol, Ph.

Ruan, M.

J. Gu, J. Shi, L. Xiong, H. Chen, and M. Ruan, “A new strategy to incorporate highly dispersed nanoparticles into the pore channels of mesoporous silica thin films,” Microporous Mesoporous Mater. 74(1-3), 199–204 (2004).
[Crossref]

Ryasnyanskiy, A. I.

R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007).
[Crossref]

Ryasnyansky, A.

R. Ganeev, A. Ryasnyansky, A. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glass in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
[Crossref]

Sahoo, Y.

Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. Furlani, and P. Prasad, “Field-directed self-assembly of magnetic nanoparticles,” J. Phys. Chem. B 108(11), 3380–3383 (2004).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Steyland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sakaguchi, T.

M. Ando, K. Kadono, M. Haluta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties,” J. Appl. Phys. 75(6), 3075 (1994).
[Crossref]

Salgueiriño-Maceira, V.

M. A. Correa-Duarte, M. Grzelczak, V. Salgueiriño-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B 109(41), 19060–19063 (2005).
[Crossref]

Satou, M.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties,” J. Appl. Phys. 75(6), 3075 (1994).
[Crossref]

Sevilla, M.

A. Fuertes, M. Sevilla, S. Alvarez, T. Valdes-Solis, and P. Tartaj, “Templated synthesis of mesoporous superparamagnetic polymers,” Adv. Funct. Mater. 17(14), 2321–2327 (2007).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Steyland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sheikin, I.

F. Lévy, I. Sheikin, B. Grenier, and A. D. Huxley, “Magnetic field-induced superconductivity in the ferromagnet URhGe,” Science 309(5739), 1343–1346 (2005).
[Crossref] [PubMed]

Shi, J.

F. Cui, Z. Hua, X. Cui, L. Guo, C. Wei, W. Bu, and J. Shi, “Au nanoparticles incorporated mesoporous silica thin films with a high Au content: preparation and third-order optical non-linearity,” Dalton Trans. (15): 2679–2682 (2009).
[Crossref] [PubMed]

J. Gu, J. Shi, G. You, L. Xiong, S. Qian, Z. Hua, and H. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. 17(5), 557–560 (2005).
[Crossref]

J. Gu, J. Shi, L. Xiong, H. Chen, and M. Ruan, “A new strategy to incorporate highly dispersed nanoparticles into the pore channels of mesoporous silica thin films,” Microporous Mesoporous Mater. 74(1-3), 199–204 (2004).
[Crossref]

Shinagawa, H.

S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410(6831), 908–910 (2001).
[Crossref] [PubMed]

Shtein, M.

D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, “Structure and electronic properties of solid acids based on tungsten oxide nanostructures,” J. Phys. Chem. B 103(4), 630–640 (1999).
[Crossref]

Sierazdki, K.

M. A. Correa-Duarte, M. Grzelczak, V. Salgueiriño-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B 109(41), 19060–19063 (2005).
[Crossref]

Soled, S. L.

D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, “Structure and electronic properties of solid acids based on tungsten oxide nanostructures,” J. Phys. Chem. B 103(4), 630–640 (1999).
[Crossref]

Stepanov, A.

R. Ganeev, A. Ryasnyansky, A. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glass in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
[Crossref]

Stucky, G.

D. Zhao, P. Yang, N. Melosh, J. Feng, B. Chmelka, and G. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. 10(16), 1380–1385 (1998).
[Crossref]

Sulplice, A.

P. Derango, M. Lees, P. Lejay, A. Sulplice, R. Tounier, M. Ingold, P. Germi, and M. Pernet, “Texturing of magnetic materials at high temperature by solidification in a magnetic field,” Nature 349(6312), 770–772 (1991).
[Crossref]

Tanaka, H.

S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410(6831), 908–910 (2001).
[Crossref] [PubMed]

Tang, G.

B. Yu, C. Zhu, F. Gan, X. Wu, G. Zhang, G. Tang, and W. Chen, “Optical nonlinearities of Fe2O3 nanoparticles investigated by Z-scan technique,” Opt. Mater. 8(4), 249–254 (1997).
[Crossref]

Tartaj, P.

A. Fuertes, M. Sevilla, S. Alvarez, T. Valdes-Solis, and P. Tartaj, “Templated synthesis of mesoporous superparamagnetic polymers,” Adv. Funct. Mater. 17(14), 2321–2327 (2007).
[Crossref]

Terai, Y.

S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410(6831), 908–910 (2001).
[Crossref] [PubMed]

Terashima, T.

S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410(6831), 908–910 (2001).
[Crossref] [PubMed]

Tokumoto, M.

S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410(6831), 908–910 (2001).
[Crossref] [PubMed]

Tounier, R.

P. Derango, M. Lees, P. Lejay, A. Sulplice, R. Tounier, M. Ingold, P. Germi, and M. Pernet, “Texturing of magnetic materials at high temperature by solidification in a magnetic field,” Nature 349(6312), 770–772 (1991).
[Crossref]

Trudel, S.

S. Trudel, C. Jones, and R. Hill, “Magnetic properties of nanocrystalline iron oxide/amorphous manganese oxide nanocomposite thin films prepared via photochemical metal-organic deposition,” J. Mater. Chem. 17(21), 2206 (2007).
[Crossref]

Uji, S.

S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410(6831), 908–910 (2001).
[Crossref] [PubMed]

Usmanov, T.

R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007).
[Crossref]

R. Ganeev, A. Ryasnyansky, A. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glass in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
[Crossref]

Valdes-Solis, T.

A. Fuertes, M. Sevilla, S. Alvarez, T. Valdes-Solis, and P. Tartaj, “Templated synthesis of mesoporous superparamagnetic polymers,” Adv. Funct. Mater. 17(14), 2321–2327 (2007).
[Crossref]

Van Steyland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Steyland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wang, H.

H. Wang, X. Ma, Y. He, S. Mitani, and M. Motokawa, “Enhancement in ordering of FePt films by magnetic field annealing,” Appl. Phys. Lett. 85(12), 2304 (2004).
[Crossref]

Wang, S.

Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. Furlani, and P. Prasad, “Field-directed self-assembly of magnetic nanoparticles,” J. Phys. Chem. B 108(11), 3380–3383 (2004).
[Crossref]

Wei, C.

F. Cui, Z. Hua, X. Cui, L. Guo, C. Wei, W. Bu, and J. Shi, “Au nanoparticles incorporated mesoporous silica thin films with a high Au content: preparation and third-order optical non-linearity,” Dalton Trans. (15): 2679–2682 (2009).
[Crossref] [PubMed]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Steyland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wilson, R. D.

D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, “Structure and electronic properties of solid acids based on tungsten oxide nanostructures,” J. Phys. Chem. B 103(4), 630–640 (1999).
[Crossref]

Wu, X.

B. Yu, C. Zhu, F. Gan, X. Wu, G. Zhang, G. Tang, and W. Chen, “Optical nonlinearities of Fe2O3 nanoparticles investigated by Z-scan technique,” Opt. Mater. 8(4), 249–254 (1997).
[Crossref]

Xiong, L.

J. Gu, J. Shi, G. You, L. Xiong, S. Qian, Z. Hua, and H. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. 17(5), 557–560 (2005).
[Crossref]

J. Gu, J. Shi, L. Xiong, H. Chen, and M. Ruan, “A new strategy to incorporate highly dispersed nanoparticles into the pore channels of mesoporous silica thin films,” Microporous Mesoporous Mater. 74(1-3), 199–204 (2004).
[Crossref]

Yakabe, T.

S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410(6831), 908–910 (2001).
[Crossref] [PubMed]

Yamada, T.

T. Hashimoto, T. Yamada, and T. Yoko, “Third-order nonlinear optical properties of sol–gel derived α- Fe2O3, γ- Fe2O3, and Fe3O4 thin films,” J. Appl. Phys. 80(6), 3184 (1996).
[Crossref]

Yang, P.

D. Zhao, P. Yang, N. Melosh, J. Feng, B. Chmelka, and G. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. 10(16), 1380–1385 (1998).
[Crossref]

Yoko, T.

T. Hashimoto, T. Yamada, and T. Yoko, “Third-order nonlinear optical properties of sol–gel derived α- Fe2O3, γ- Fe2O3, and Fe3O4 thin films,” J. Appl. Phys. 80(6), 3184 (1996).
[Crossref]

Yoon, K. B.

H. S. Kim, M. H. Lee, N. C. Jeong, S. M. Lee, B. K. Rhee, and K. B. Yoon, “Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots,” J. Am. Chem. Soc. 128(47), 15070–15071 (2006).
[Crossref] [PubMed]

You, G.

J. Gu, J. Shi, G. You, L. Xiong, S. Qian, Z. Hua, and H. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. 17(5), 557–560 (2005).
[Crossref]

Yu, B.

B. Yu, C. Zhu, and F. Gan, “Large nonlinear optical properties of Fe2O3 nanoparticles,” Physica E 8(4), 360–364 (2000).
[Crossref]

B. Yu, C. Zhu, F. Gan, X. Wu, G. Zhang, G. Tang, and W. Chen, “Optical nonlinearities of Fe2O3 nanoparticles investigated by Z-scan technique,” Opt. Mater. 8(4), 249–254 (1997).
[Crossref]

Zhang, G.

B. Yu, C. Zhu, F. Gan, X. Wu, G. Zhang, G. Tang, and W. Chen, “Optical nonlinearities of Fe2O3 nanoparticles investigated by Z-scan technique,” Opt. Mater. 8(4), 249–254 (1997).
[Crossref]

Zhao, D.

D. Zhao, P. Yang, N. Melosh, J. Feng, B. Chmelka, and G. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. 10(16), 1380–1385 (1998).
[Crossref]

Zhou, H.

H. Zhou, A. Mito, D. Kundu, and I. Honma, “Nonlinear optical susceptibility of Fe2O3 thin film synthesized by a modified sol-gel method,” J. Sol-Gel Sci. Technol. 19(1/3), 539–541 (2000).
[Crossref]

Zhou, W.

J. Lin, W. Zhou, A. Kumbhar, J. Fang, E. Carpenter, and C. O’Connor, “Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly,” J. Solid State Chem. 159(1), 26–31 (2001).
[Crossref]

Zhu, C.

B. Yu, C. Zhu, and F. Gan, “Large nonlinear optical properties of Fe2O3 nanoparticles,” Physica E 8(4), 360–364 (2000).
[Crossref]

B. Yu, C. Zhu, F. Gan, X. Wu, G. Zhang, G. Tang, and W. Chen, “Optical nonlinearities of Fe2O3 nanoparticles investigated by Z-scan technique,” Opt. Mater. 8(4), 249–254 (1997).
[Crossref]

Adv. Funct. Mater. (1)

A. Fuertes, M. Sevilla, S. Alvarez, T. Valdes-Solis, and P. Tartaj, “Templated synthesis of mesoporous superparamagnetic polymers,” Adv. Funct. Mater. 17(14), 2321–2327 (2007).
[Crossref]

Adv. Mater. (2)

J. Gu, J. Shi, G. You, L. Xiong, S. Qian, Z. Hua, and H. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. 17(5), 557–560 (2005).
[Crossref]

D. Zhao, P. Yang, N. Melosh, J. Feng, B. Chmelka, and G. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. 10(16), 1380–1385 (1998).
[Crossref]

Appl. Phys. Lett. (1)

H. Wang, X. Ma, Y. He, S. Mitani, and M. Motokawa, “Enhancement in ordering of FePt films by magnetic field annealing,” Appl. Phys. Lett. 85(12), 2304 (2004).
[Crossref]

Dalton Trans. (1)

F. Cui, Z. Hua, X. Cui, L. Guo, C. Wei, W. Bu, and J. Shi, “Au nanoparticles incorporated mesoporous silica thin films with a high Au content: preparation and third-order optical non-linearity,” Dalton Trans. (15): 2679–2682 (2009).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Steyland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Am. Chem. Soc. (1)

H. S. Kim, M. H. Lee, N. C. Jeong, S. M. Lee, B. K. Rhee, and K. B. Yoon, “Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots,” J. Am. Chem. Soc. 128(47), 15070–15071 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (2)

T. Hashimoto, T. Yamada, and T. Yoko, “Third-order nonlinear optical properties of sol–gel derived α- Fe2O3, γ- Fe2O3, and Fe3O4 thin films,” J. Appl. Phys. 80(6), 3184 (1996).
[Crossref]

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties,” J. Appl. Phys. 75(6), 3075 (1994).
[Crossref]

J. Mater. Chem. (1)

S. Trudel, C. Jones, and R. Hill, “Magnetic properties of nanocrystalline iron oxide/amorphous manganese oxide nanocomposite thin films prepared via photochemical metal-organic deposition,” J. Mater. Chem. 17(21), 2206 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (3)

D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, “Structure and electronic properties of solid acids based on tungsten oxide nanostructures,” J. Phys. Chem. B 103(4), 630–640 (1999).
[Crossref]

M. A. Correa-Duarte, M. Grzelczak, V. Salgueiriño-Maceira, M. Giersig, L. M. Liz-Marzan, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B 109(41), 19060–19063 (2005).
[Crossref]

Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. Furlani, and P. Prasad, “Field-directed self-assembly of magnetic nanoparticles,” J. Phys. Chem. B 108(11), 3380–3383 (2004).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

H. Zhou, A. Mito, D. Kundu, and I. Honma, “Nonlinear optical susceptibility of Fe2O3 thin film synthesized by a modified sol-gel method,” J. Sol-Gel Sci. Technol. 19(1/3), 539–541 (2000).
[Crossref]

J. Solid State Chem. (1)

J. Lin, W. Zhou, A. Kumbhar, J. Fang, E. Carpenter, and C. O’Connor, “Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly,” J. Solid State Chem. 159(1), 26–31 (2001).
[Crossref]

Microporous Mesoporous Mater. (1)

J. Gu, J. Shi, L. Xiong, H. Chen, and M. Ruan, “A new strategy to incorporate highly dispersed nanoparticles into the pore channels of mesoporous silica thin films,” Microporous Mesoporous Mater. 74(1-3), 199–204 (2004).
[Crossref]

Nature (3)

P. Derango, M. Lees, P. Lejay, A. Sulplice, R. Tounier, M. Ingold, P. Germi, and M. Pernet, “Texturing of magnetic materials at high temperature by solidification in a magnetic field,” Nature 349(6312), 770–772 (1991).
[Crossref]

S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410(6831), 908–910 (2001).
[Crossref] [PubMed]

M. Ando, K. Kadono, M. Haluta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

Opt. Commun. (1)

R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

B. Yu, C. Zhu, F. Gan, X. Wu, G. Zhang, G. Tang, and W. Chen, “Optical nonlinearities of Fe2O3 nanoparticles investigated by Z-scan technique,” Opt. Mater. 8(4), 249–254 (1997).
[Crossref]

Phys. Status Solidi (1)

R. Ganeev, A. Ryasnyansky, A. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glass in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
[Crossref]

Physica E (1)

B. Yu, C. Zhu, and F. Gan, “Large nonlinear optical properties of Fe2O3 nanoparticles,” Physica E 8(4), 360–364 (2000).
[Crossref]

Science (1)

F. Lévy, I. Sheikin, B. Grenier, and A. D. Huxley, “Magnetic field-induced superconductivity in the ferromagnet URhGe,” Science 309(5739), 1343–1346 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 SAXRD patterns of the blank MSTF and Fe–MSTFs after calcination at 400 °C for 3 h.
Fig. 2
Fig. 2 TEM images of the air-dried sample Fe–MSTF-3 without heat treatment (a) and after heat treatment at 800 °C for 1h under 6 T magnetic field (b).
Fig. 3
Fig. 3 Typical EDS spectrum of sample Fe–MSTF-3 after heat treatment at 800 °C for 1h under 6 T magnetic field.
Fig. 4
Fig. 4 XPS absorption spectrum of sample Fe–MSTF-3 after calcination at 400 °C for 3 h.
Fig. 5
Fig. 5 UV-vis spectra of blank MSTF (a) and Fe–MSTFs after calcination at 400 °C for 3 h: (b) Fe–MSTF-1, (c) Fe–MSTF-2, (d) Fe–MSTF-3. The insets are the plots of (αhν)2 against () for each Fe–MSTF sample.
Fig. 6
Fig. 6 CA (a) and OA (b) Z-Scan outputs of sample Fe–MSTF-3 after magnetic field heat treatment. The solid lines in CA and OA Z-scan outputs are the fitting curves.

Tables (1)

Tables Icon

Table 1 Fe contents (Cf) and optical data of the Fe-MSTF samples before (Non-treated.) and after 6 T magnetic field heat treatment (Magnetically treated).

Metrics