Abstract

Woodpile photonic crystals are amongst the preferred candidates for the next generation of photonics components. However, the photocurable resists used to produce them still lack the optical properties (high-n, non-linearity) suitable for photonics applications. A chemical bath deposition protocol has been adapted to deposit high-n/non-linear chalcogenide CdS on the surface of Ormocer® woodpiles. The deposition parameters have been adjusted to obtain heterogeneous growth of CdS layers on the Ormocer® surface. The layers shift the photonic band-gap and increase its amplitude by more than 15%. Software simulation confirmed that the woodpile effective refractive index underwent an excess of 30% increase.

©2010 Optical Society of America

Full Article  |  PDF Article

Corrections

Dario Buso, Elisa Nicoletti, Jiafang Li, and Min Gu, "Engineering the refractive index of three-dimensional photonic crystals through multilayer deposition of CdS films: erratum," Opt. Express 18, 3013-3013 (2010)
http://proxy.osapublishing.org/oe/abstract.cfm?uri=oe-18-3-3013

OSA Recommended Articles
Engineering the refractive index of three-dimensional photonic crystals through multilayer deposition of CdS films: erratum

Dario Buso, Elisa Nicoletti, Jiafang Li, and Min Gu
Opt. Express 18(3) 3013-3013 (2010)

Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment

Jiafang Li, Baohua Jia, and Min Gu
Opt. Express 16(24) 20073-20080 (2008)

Fabrication of three-dimensional photonic crystals with multilayer photolithography

Peng Yao, Garrett J. Schneider, Dennis W. Prather, Eric D. Wetzel, and Daniel J. O’Brien
Opt. Express 13(7) 2370-2376 (2005)

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic band cap guidance in optical fibers,” Science 299, 358 (2003).
    [Crossref] [PubMed]
  2. S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006).
    [Crossref] [PubMed]
  3. L. F. Mollenauer, “Physics. Nonlinear optics in fibers,” Science 302(5647), 996–997 (2003).
    [Crossref] [PubMed]
  4. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Photonic band cap guidance in optical fibers,” Nat. Phys. 2, 856 (2006).
    [Crossref]
  5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  6. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  7. S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
    [Crossref]
  8. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
    [Crossref] [PubMed]
  9. B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
    [Crossref] [PubMed]
  10. J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281(5378), 802–804 (1998).
    [Crossref]
  11. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).
  12. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53-56 (1999).
  13. P. V. Braun, S. A. Rinne, and F. García-Santamaria, “Introducing Defects in 3D Photonic Crystals: State of th Art,” Adv. Mater. 18(20), 2665–2678 (2006).
    [Crossref]
  14. S. A. Rinne, F. García-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
    [Crossref]
  15. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [Crossref]
  16. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
    [Crossref]
  17. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [Crossref] [PubMed]
  18. Y. Jun, P. Nagpal, and D. J. Norris, “Thermally Stable Organic-Inorganic Hybrid Photoresists for Fabrication of Photonic Band Gap Structures with Direct Laser Writing,” Adv. Mater. 20(3), 606–610 (2008).
    [Crossref]
  19. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
    [Crossref] [PubMed]
  20. B. Jia, S. Wu, J. Li, and M. Gu, “Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process,” J. Appl. Phys. 102(9), 096102 (2007).
    [Crossref]
  21. S. Wong, M. Deubel, F. P. Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
    [Crossref]
  22. E. Nicoletti, G. Zhou, B. Jia, M. J. Ventura, D. Bulla, B. Luther-Davies, and M. Gu, “Observation of multiple higher-order stopgaps from three-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 33(20), 2311–2313 (2008).
    [Crossref] [PubMed]
  23. J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
    [Crossref]
  24. J. Li, B. Jia, and M. Gu, “Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment,” Opt. Express 16(24), 20073–20080 (2008).
    [Crossref] [PubMed]
  25. R. Xie, T. Sekiguchi, D. Li, D. Yang, and M. Jiang, “Precise fabrication of point defects in self-assembled three-dimensional macroporous photonic crystals,” J. Phys. Chem. B 110(3), 1107–1110 (2006).
    [Crossref] [PubMed]
  26. Y. C. Lee, T. J. Kuo, C. J. Hsu, Y. W. Su, and C. C. Chen, “Fabrication of 3D Macroporous Structures of II-VI and III-V Semiconductors Using Electrochemical Deposition,” Langmuir 18(25), 9942–9946 (2002).
    [Crossref]
  27. Y. R. Lin, C. Y. Kuo, and S. Y. Lu, “Stop band tuning of three-dimensional photonic crystals through coating of semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 79(7), 1741 (2004).
  28. Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), 357 (1997).
    [Crossref]
  29. Z. Lei, J. Li, Y. Ke, Y. Zhang, H. Wang, and G. He, “fabrication of macroporous cadmium sulfide with three-dimensional structure by solvothermal synthesis,” J. Mater. Chem. 11(7), 1778–1780 (2001).
    [Crossref]
  30. L. K. Teh, V. Furin, A. Martucci, M. Guglielmi, C. C. Wong, and F. Romanato, “Electrodeposition of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications,” Thin Solid Films 515(15), 5787–5791 (2007).
    [Crossref]
  31. L. M. Chuang, H. K. Fu, and Y. F. Chen, “Fabrication and optical properties of two-dimensional photonic crystals of CdSe pillars,” Appl. Phys. Lett. 86(6), 061902 (2005).
    [Crossref]
  32. Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures,” Adv. Mater. 20(5), 914–919 (2008).
    [Crossref]
  33. J. M. Doña and J. Herrero, “Chemical bath deposition of CdS thin films: An approach to the chemical mechanism through Study of the film microstructure,” J. Electrochem. Soc. 144(11), 4081 (1997).
    [Crossref]
  34. D. Buso, L. Palmer, V. Bello, G. Mattei, M. Post, P. Mulvaney, and A. Martucci, “Self-assembled gold nanoparticle monolayers in sol-gel matrices: synthesis and gas sensing applications,” J. Mater. Chem. 19(14), 2051 (2009).
    [Crossref]
  35. H. Metin and R. Esen, “Annealing studies on CBD grown US thin films,” J. Cryst. Growth 258(1-2), 141–148 (2003).
    [Crossref]
  36. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214 (1983).
    [Crossref]
  37. M. Kar and B. S. Verma, “Improvements in the determination of extinction coefficients of a thin film using an envelope method,” J. Opt. A, Pure Appl. Opt. 7(10), 599–603 (2005).
    [Crossref]
  38. E. Çetinörgü, C. Gümüş, and R. Esen, “Effects of deposition time and temperature on the optical properties of air-annealed chemical bath deposited CdS films,” Thin Solid Films 515(4), 1688–1693 (2006).
    [Crossref]
  39. M. D. Archbold, D. P. Halliday, K. Durose, T. P. A. Hase, D. S. Boyle, S. Mazzamuto, N. Romeo, and A. Bosio, “Development of low temperature approaches to device quality CdS: a modified geometry for solution growth of thin films and their characterisation,” Thin Solid Films 515(5), 2954–2957 (2007).
    [Crossref]
  40. MPB software package, http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands .
  41. J. Serbin and M. Gu, “Superprism phenomena in polymeric woodpile structures,” J. Appl. Phys. 98(12), 123101 (2005).
    [Crossref]
  42. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [Crossref] [PubMed]
  43. J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral Redistribution in Spontaneous Emission from Quantum-Dot Infiltrated 3D Woodpile Photonic Crystals for Telecommunications,” Adv. Mater. 19(20), 3276–3280 (2007).
    [Crossref]
  44. J. Li, B. Jia, G. Zhou, and M. Gu, “Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material,” Opt. Express 14(22), 10740–10745 (2006).
    [Crossref] [PubMed]
  45. R. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Mater. Chem. Phys. 65(1), 1–31 (2000).
    [Crossref]
  46. L. Zhou, D. S. Boyle, K. Govender, and P. O’Brien, “High efficiency solution infiltration routes to thin films with photonic properties,” J. Exp. Nanosci. 1(2), 221–233 (2006).
    [Crossref]
  47. M. Maldovan, E. L. Thomas, and C. W. Carter, “Layer-by-layer diamond like woodpile structure with a large photonic band gap,” Appl. Phys. Lett. 84(3), 362–364 (2004).
    [Crossref]

2009 (1)

D. Buso, L. Palmer, V. Bello, G. Mattei, M. Post, P. Mulvaney, and A. Martucci, “Self-assembled gold nanoparticle monolayers in sol-gel matrices: synthesis and gas sensing applications,” J. Mater. Chem. 19(14), 2051 (2009).
[Crossref]

2008 (5)

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[Crossref]

E. Nicoletti, G. Zhou, B. Jia, M. J. Ventura, D. Bulla, B. Luther-Davies, and M. Gu, “Observation of multiple higher-order stopgaps from three-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 33(20), 2311–2313 (2008).
[Crossref] [PubMed]

J. Li, B. Jia, and M. Gu, “Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment,” Opt. Express 16(24), 20073–20080 (2008).
[Crossref] [PubMed]

S. A. Rinne, F. García-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

Y. Jun, P. Nagpal, and D. J. Norris, “Thermally Stable Organic-Inorganic Hybrid Photoresists for Fabrication of Photonic Band Gap Structures with Direct Laser Writing,” Adv. Mater. 20(3), 606–610 (2008).
[Crossref]

2007 (4)

B. Jia, S. Wu, J. Li, and M. Gu, “Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process,” J. Appl. Phys. 102(9), 096102 (2007).
[Crossref]

L. K. Teh, V. Furin, A. Martucci, M. Guglielmi, C. C. Wong, and F. Romanato, “Electrodeposition of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications,” Thin Solid Films 515(15), 5787–5791 (2007).
[Crossref]

M. D. Archbold, D. P. Halliday, K. Durose, T. P. A. Hase, D. S. Boyle, S. Mazzamuto, N. Romeo, and A. Bosio, “Development of low temperature approaches to device quality CdS: a modified geometry for solution growth of thin films and their characterisation,” Thin Solid Films 515(5), 2954–2957 (2007).
[Crossref]

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral Redistribution in Spontaneous Emission from Quantum-Dot Infiltrated 3D Woodpile Photonic Crystals for Telecommunications,” Adv. Mater. 19(20), 3276–3280 (2007).
[Crossref]

2006 (9)

J. Li, B. Jia, G. Zhou, and M. Gu, “Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material,” Opt. Express 14(22), 10740–10745 (2006).
[Crossref] [PubMed]

L. Zhou, D. S. Boyle, K. Govender, and P. O’Brien, “High efficiency solution infiltration routes to thin films with photonic properties,” J. Exp. Nanosci. 1(2), 221–233 (2006).
[Crossref]

E. Çetinörgü, C. Gümüş, and R. Esen, “Effects of deposition time and temperature on the optical properties of air-annealed chemical bath deposited CdS films,” Thin Solid Films 515(4), 1688–1693 (2006).
[Crossref]

S. Wong, M. Deubel, F. P. Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
[Crossref]

R. Xie, T. Sekiguchi, D. Li, D. Yang, and M. Jiang, “Precise fabrication of point defects in self-assembled three-dimensional macroporous photonic crystals,” J. Phys. Chem. B 110(3), 1107–1110 (2006).
[Crossref] [PubMed]

P. V. Braun, S. A. Rinne, and F. García-Santamaria, “Introducing Defects in 3D Photonic Crystals: State of th Art,” Adv. Mater. 18(20), 2665–2678 (2006).
[Crossref]

S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006).
[Crossref] [PubMed]

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Photonic band cap guidance in optical fibers,” Nat. Phys. 2, 856 (2006).
[Crossref]

2005 (3)

L. M. Chuang, H. K. Fu, and Y. F. Chen, “Fabrication and optical properties of two-dimensional photonic crystals of CdSe pillars,” Appl. Phys. Lett. 86(6), 061902 (2005).
[Crossref]

M. Kar and B. S. Verma, “Improvements in the determination of extinction coefficients of a thin film using an envelope method,” J. Opt. A, Pure Appl. Opt. 7(10), 599–603 (2005).
[Crossref]

J. Serbin and M. Gu, “Superprism phenomena in polymeric woodpile structures,” J. Appl. Phys. 98(12), 123101 (2005).
[Crossref]

2004 (4)

M. Maldovan, E. L. Thomas, and C. W. Carter, “Layer-by-layer diamond like woodpile structure with a large photonic band gap,” Appl. Phys. Lett. 84(3), 362–364 (2004).
[Crossref]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Y. R. Lin, C. Y. Kuo, and S. Y. Lu, “Stop band tuning of three-dimensional photonic crystals through coating of semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 79(7), 1741 (2004).

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[Crossref] [PubMed]

2003 (4)

L. F. Mollenauer, “Physics. Nonlinear optics in fibers,” Science 302(5647), 996–997 (2003).
[Crossref] [PubMed]

P. Russell, “Photonic band cap guidance in optical fibers,” Science 299, 358 (2003).
[Crossref] [PubMed]

H. Metin and R. Esen, “Annealing studies on CBD grown US thin films,” J. Cryst. Growth 258(1-2), 141–148 (2003).
[Crossref]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[Crossref] [PubMed]

2002 (2)

Y. C. Lee, T. J. Kuo, C. J. Hsu, Y. W. Su, and C. C. Chen, “Fabrication of 3D Macroporous Structures of II-VI and III-V Semiconductors Using Electrochemical Deposition,” Langmuir 18(25), 9942–9946 (2002).
[Crossref]

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
[Crossref]

2001 (1)

Z. Lei, J. Li, Y. Ke, Y. Zhang, H. Wang, and G. He, “fabrication of macroporous cadmium sulfide with three-dimensional structure by solvothermal synthesis,” J. Mater. Chem. 11(7), 1778–1780 (2001).
[Crossref]

2000 (3)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

R. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Mater. Chem. Phys. 65(1), 1–31 (2000).
[Crossref]

1999 (2)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53-56 (1999).

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

1998 (3)

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[Crossref] [PubMed]

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281(5378), 802–804 (1998).
[Crossref]

S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

1997 (2)

J. M. Doña and J. Herrero, “Chemical bath deposition of CdS thin films: An approach to the chemical mechanism through Study of the film microstructure,” J. Electrochem. Soc. 144(11), 4081 (1997).
[Crossref]

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), 357 (1997).
[Crossref]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214 (1983).
[Crossref]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Archbold, M. D.

M. D. Archbold, D. P. Halliday, K. Durose, T. P. A. Hase, D. S. Boyle, S. Mazzamuto, N. Romeo, and A. Bosio, “Development of low temperature approaches to device quality CdS: a modified geometry for solution growth of thin films and their characterisation,” Thin Solid Films 515(5), 2954–2957 (2007).
[Crossref]

Astratov, V. N.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), 357 (1997).
[Crossref]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Bello, V.

D. Buso, L. Palmer, V. Bello, G. Mattei, M. Post, P. Mulvaney, and A. Martucci, “Self-assembled gold nanoparticle monolayers in sol-gel matrices: synthesis and gas sensing applications,” J. Mater. Chem. 19(14), 2051 (2009).
[Crossref]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Blanford, C. F.

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[Crossref] [PubMed]

Bogomolov, V. N.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), 357 (1997).
[Crossref]

Bosio, A.

M. D. Archbold, D. P. Halliday, K. Durose, T. P. A. Hase, D. S. Boyle, S. Mazzamuto, N. Romeo, and A. Bosio, “Development of low temperature approaches to device quality CdS: a modified geometry for solution growth of thin films and their characterisation,” Thin Solid Films 515(5), 2954–2957 (2007).
[Crossref]

Boyle, D. S.

M. D. Archbold, D. P. Halliday, K. Durose, T. P. A. Hase, D. S. Boyle, S. Mazzamuto, N. Romeo, and A. Bosio, “Development of low temperature approaches to device quality CdS: a modified geometry for solution growth of thin films and their characterisation,” Thin Solid Films 515(5), 2954–2957 (2007).
[Crossref]

L. Zhou, D. S. Boyle, K. Govender, and P. O’Brien, “High efficiency solution infiltration routes to thin films with photonic properties,” J. Exp. Nanosci. 1(2), 221–233 (2006).
[Crossref]

Braun, P. V.

S. A. Rinne, F. García-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

P. V. Braun, S. A. Rinne, and F. García-Santamaria, “Introducing Defects in 3D Photonic Crystals: State of th Art,” Adv. Mater. 18(20), 2665–2678 (2006).
[Crossref]

Bulla, D.

Bullen, C.

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral Redistribution in Spontaneous Emission from Quantum-Dot Infiltrated 3D Woodpile Photonic Crystals for Telecommunications,” Adv. Mater. 19(20), 3276–3280 (2007).
[Crossref]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Buso, D.

D. Buso, L. Palmer, V. Bello, G. Mattei, M. Post, P. Mulvaney, and A. Martucci, “Self-assembled gold nanoparticle monolayers in sol-gel matrices: synthesis and gas sensing applications,” J. Mater. Chem. 19(14), 2051 (2009).
[Crossref]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53-56 (1999).

Carter, C. W.

M. Maldovan, E. L. Thomas, and C. W. Carter, “Layer-by-layer diamond like woodpile structure with a large photonic band gap,” Appl. Phys. Lett. 84(3), 362–364 (2004).
[Crossref]

Çetinörgü, E.

E. Çetinörgü, C. Gümüş, and R. Esen, “Effects of deposition time and temperature on the optical properties of air-annealed chemical bath deposited CdS films,” Thin Solid Films 515(4), 1688–1693 (2006).
[Crossref]

Chen, C. C.

Y. C. Lee, T. J. Kuo, C. J. Hsu, Y. W. Su, and C. C. Chen, “Fabrication of 3D Macroporous Structures of II-VI and III-V Semiconductors Using Electrochemical Deposition,” Langmuir 18(25), 9942–9946 (2002).
[Crossref]

Chen, W. Q.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[Crossref]

Chen, Y. F.

L. M. Chuang, H. K. Fu, and Y. F. Chen, “Fabrication and optical properties of two-dimensional photonic crystals of CdSe pillars,” Appl. Phys. Lett. 86(6), 061902 (2005).
[Crossref]

Chichkov, B.

Chichkov, B. N.

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Chuang, L. M.

L. M. Chuang, H. K. Fu, and Y. F. Chen, “Fabrication and optical properties of two-dimensional photonic crystals of CdSe pillars,” Appl. Phys. Lett. 86(6), 061902 (2005).
[Crossref]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Cole, J. H.

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Photonic band cap guidance in optical fibers,” Nat. Phys. 2, 856 (2006).
[Crossref]

Cronauer, C.

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53-56 (1999).

Deubel, M.

S. Wong, M. Deubel, F. P. Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Domann, G.

Doña, J. M.

J. M. Doña and J. Herrero, “Chemical bath deposition of CdS thin films: An approach to the chemical mechanism through Study of the film microstructure,” J. Electrochem. Soc. 144(11), 4081 (1997).
[Crossref]

Dong, X. Z.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[Crossref]

Duan, X. M.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[Crossref]

Durose, K.

M. D. Archbold, D. P. Halliday, K. Durose, T. P. A. Hase, D. S. Boyle, S. Mazzamuto, N. Romeo, and A. Bosio, “Development of low temperature approaches to device quality CdS: a modified geometry for solution growth of thin films and their characterisation,” Thin Solid Films 515(5), 2954–2957 (2007).
[Crossref]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Egbert, A.

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Erksine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Esen, R.

E. Çetinörgü, C. Gümüş, and R. Esen, “Effects of deposition time and temperature on the optical properties of air-annealed chemical bath deposited CdS films,” Thin Solid Films 515(4), 1688–1693 (2006).
[Crossref]

H. Metin and R. Esen, “Annealing studies on CBD grown US thin films,” J. Cryst. Growth 258(1-2), 141–148 (2003).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Fröhlich, L.

Fu, H. K.

L. M. Chuang, H. K. Fu, and Y. F. Chen, “Fabrication and optical properties of two-dimensional photonic crystals of CdSe pillars,” Appl. Phys. Lett. 86(6), 061902 (2005).
[Crossref]

Furin, V.

L. K. Teh, V. Furin, A. Martucci, M. Guglielmi, C. C. Wong, and F. Romanato, “Electrodeposition of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications,” Thin Solid Films 515(15), 5787–5791 (2007).
[Crossref]

García-Santamaria, F.

S. A. Rinne, F. García-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

P. V. Braun, S. A. Rinne, and F. García-Santamaria, “Introducing Defects in 3D Photonic Crystals: State of th Art,” Adv. Mater. 18(20), 2665–2678 (2006).
[Crossref]

Govender, K.

L. Zhou, D. S. Boyle, K. Govender, and P. O’Brien, “High efficiency solution infiltration routes to thin films with photonic properties,” J. Exp. Nanosci. 1(2), 221–233 (2006).
[Crossref]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Greentree, A. D.

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Photonic band cap guidance in optical fibers,” Nat. Phys. 2, 856 (2006).
[Crossref]

Gu, M.

E. Nicoletti, G. Zhou, B. Jia, M. J. Ventura, D. Bulla, B. Luther-Davies, and M. Gu, “Observation of multiple higher-order stopgaps from three-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 33(20), 2311–2313 (2008).
[Crossref] [PubMed]

J. Li, B. Jia, and M. Gu, “Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment,” Opt. Express 16(24), 20073–20080 (2008).
[Crossref] [PubMed]

B. Jia, S. Wu, J. Li, and M. Gu, “Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process,” J. Appl. Phys. 102(9), 096102 (2007).
[Crossref]

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral Redistribution in Spontaneous Emission from Quantum-Dot Infiltrated 3D Woodpile Photonic Crystals for Telecommunications,” Adv. Mater. 19(20), 3276–3280 (2007).
[Crossref]

J. Li, B. Jia, G. Zhou, and M. Gu, “Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material,” Opt. Express 14(22), 10740–10745 (2006).
[Crossref] [PubMed]

J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
[Crossref]

J. Serbin and M. Gu, “Superprism phenomena in polymeric woodpile structures,” J. Appl. Phys. 98(12), 123101 (2005).
[Crossref]

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
[Crossref]

Guglielmi, M.

L. K. Teh, V. Furin, A. Martucci, M. Guglielmi, C. C. Wong, and F. Romanato, “Electrodeposition of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications,” Thin Solid Films 515(15), 5787–5791 (2007).
[Crossref]

Gümüs, C.

E. Çetinörgü, C. Gümüş, and R. Esen, “Effects of deposition time and temperature on the optical properties of air-annealed chemical bath deposited CdS films,” Thin Solid Films 515(4), 1688–1693 (2006).
[Crossref]

Halliday, D. P.

M. D. Archbold, D. P. Halliday, K. Durose, T. P. A. Hase, D. S. Boyle, S. Mazzamuto, N. Romeo, and A. Bosio, “Development of low temperature approaches to device quality CdS: a modified geometry for solution growth of thin films and their characterisation,” Thin Solid Films 515(5), 2954–2957 (2007).
[Crossref]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53-56 (1999).

Hase, T. P. A.

M. D. Archbold, D. P. Halliday, K. Durose, T. P. A. Hase, D. S. Boyle, S. Mazzamuto, N. Romeo, and A. Bosio, “Development of low temperature approaches to device quality CdS: a modified geometry for solution growth of thin films and their characterisation,” Thin Solid Films 515(5), 2954–2957 (2007).
[Crossref]

He, G.

Z. Lei, J. Li, Y. Ke, Y. Zhang, H. Wang, and G. He, “fabrication of macroporous cadmium sulfide with three-dimensional structure by solvothermal synthesis,” J. Mater. Chem. 11(7), 1778–1780 (2001).
[Crossref]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Herrero, J.

J. M. Doña and J. Herrero, “Chemical bath deposition of CdS thin films: An approach to the chemical mechanism through Study of the film microstructure,” J. Electrochem. Soc. 144(11), 4081 (1997).
[Crossref]

Heterington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Holland, B. T.

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[Crossref] [PubMed]

Hollenberg, L. C. L.

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Photonic band cap guidance in optical fibers,” Nat. Phys. 2, 856 (2006).
[Crossref]

Houbertz, R.

Hsu, C. J.

Y. C. Lee, T. J. Kuo, C. J. Hsu, Y. W. Su, and C. C. Chen, “Fabrication of 3D Macroporous Structures of II-VI and III-V Semiconductors Using Electrochemical Deposition,” Langmuir 18(25), 9942–9946 (2002).
[Crossref]

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Jia, B.

Jiang, M.

R. Xie, T. Sekiguchi, D. Li, D. Yang, and M. Jiang, “Precise fabrication of point defects in self-assembled three-dimensional macroporous photonic crystals,” J. Phys. Chem. B 110(3), 1107–1110 (2006).
[Crossref] [PubMed]

John, S.

S. Wong, M. Deubel, F. P. Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Jun, Y.

Y. Jun, P. Nagpal, and D. J. Norris, “Thermally Stable Organic-Inorganic Hybrid Photoresists for Fabrication of Photonic Band Gap Structures with Direct Laser Writing,” Adv. Mater. 20(3), 606–610 (2008).
[Crossref]

Kaplyanskii, A. A.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), 357 (1997).
[Crossref]

Kar, M.

M. Kar and B. S. Verma, “Improvements in the determination of extinction coefficients of a thin film using an envelope method,” J. Opt. A, Pure Appl. Opt. 7(10), 599–603 (2005).
[Crossref]

Karimov, O. Z.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), 357 (1997).
[Crossref]

Kawata, S.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[Crossref]

Ke, Y.

Z. Lei, J. Li, Y. Ke, Y. Zhang, H. Wang, and G. He, “fabrication of macroporous cadmium sulfide with three-dimensional structure by solvothermal synthesis,” J. Mater. Chem. 11(7), 1778–1780 (2001).
[Crossref]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Kuo, C. Y.

Y. R. Lin, C. Y. Kuo, and S. Y. Lu, “Stop band tuning of three-dimensional photonic crystals through coating of semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 79(7), 1741 (2004).

Kuo, T. J.

Y. C. Lee, T. J. Kuo, C. J. Hsu, Y. W. Su, and C. C. Chen, “Fabrication of 3D Macroporous Structures of II-VI and III-V Semiconductors Using Electrochemical Deposition,” Langmuir 18(25), 9942–9946 (2002).
[Crossref]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Lee, Y. C.

Y. C. Lee, T. J. Kuo, C. J. Hsu, Y. W. Su, and C. C. Chen, “Fabrication of 3D Macroporous Structures of II-VI and III-V Semiconductors Using Electrochemical Deposition,” Langmuir 18(25), 9942–9946 (2002).
[Crossref]

Lei, Z.

Z. Lei, J. Li, Y. Ke, Y. Zhang, H. Wang, and G. He, “fabrication of macroporous cadmium sulfide with three-dimensional structure by solvothermal synthesis,” J. Mater. Chem. 11(7), 1778–1780 (2001).
[Crossref]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Li, D.

R. Xie, T. Sekiguchi, D. Li, D. Yang, and M. Jiang, “Precise fabrication of point defects in self-assembled three-dimensional macroporous photonic crystals,” J. Phys. Chem. B 110(3), 1107–1110 (2006).
[Crossref] [PubMed]

Li, J.

J. Li, B. Jia, and M. Gu, “Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment,” Opt. Express 16(24), 20073–20080 (2008).
[Crossref] [PubMed]

B. Jia, S. Wu, J. Li, and M. Gu, “Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process,” J. Appl. Phys. 102(9), 096102 (2007).
[Crossref]

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral Redistribution in Spontaneous Emission from Quantum-Dot Infiltrated 3D Woodpile Photonic Crystals for Telecommunications,” Adv. Mater. 19(20), 3276–3280 (2007).
[Crossref]

J. Li, B. Jia, G. Zhou, and M. Gu, “Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material,” Opt. Express 14(22), 10740–10745 (2006).
[Crossref] [PubMed]

Z. Lei, J. Li, Y. Ke, Y. Zhang, H. Wang, and G. He, “fabrication of macroporous cadmium sulfide with three-dimensional structure by solvothermal synthesis,” J. Mater. Chem. 11(7), 1778–1780 (2001).
[Crossref]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Lin, Y. R.

Y. R. Lin, C. Y. Kuo, and S. Y. Lu, “Stop band tuning of three-dimensional photonic crystals through coating of semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 79(7), 1741 (2004).

Lokhande, C. D.

R. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Mater. Chem. Phys. 65(1), 1–31 (2000).
[Crossref]

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Lu, S. Y.

Y. R. Lin, C. Y. Kuo, and S. Y. Lu, “Stop band tuning of three-dimensional photonic crystals through coating of semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 79(7), 1741 (2004).

Luther-Davies, B.

Maldovan, M.

M. Maldovan, E. L. Thomas, and C. W. Carter, “Layer-by-layer diamond like woodpile structure with a large photonic band gap,” Appl. Phys. Lett. 84(3), 362–364 (2004).
[Crossref]

Mane, R. S.

R. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Mater. Chem. Phys. 65(1), 1–31 (2000).
[Crossref]

Marder, S. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Martucci, A.

D. Buso, L. Palmer, V. Bello, G. Mattei, M. Post, P. Mulvaney, and A. Martucci, “Self-assembled gold nanoparticle monolayers in sol-gel matrices: synthesis and gas sensing applications,” J. Mater. Chem. 19(14), 2051 (2009).
[Crossref]

L. K. Teh, V. Furin, A. Martucci, M. Guglielmi, C. C. Wong, and F. Romanato, “Electrodeposition of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications,” Thin Solid Films 515(15), 5787–5791 (2007).
[Crossref]

Mattei, G.

D. Buso, L. Palmer, V. Bello, G. Mattei, M. Post, P. Mulvaney, and A. Martucci, “Self-assembled gold nanoparticle monolayers in sol-gel matrices: synthesis and gas sensing applications,” J. Mater. Chem. 19(14), 2051 (2009).
[Crossref]

Mazzamuto, S.

M. D. Archbold, D. P. Halliday, K. Durose, T. P. A. Hase, D. S. Boyle, S. Mazzamuto, N. Romeo, and A. Bosio, “Development of low temperature approaches to device quality CdS: a modified geometry for solution growth of thin films and their characterisation,” Thin Solid Films 515(5), 2954–2957 (2007).
[Crossref]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Metin, H.

H. Metin and R. Esen, “Annealing studies on CBD grown US thin films,” J. Cryst. Growth 258(1-2), 141–148 (2003).
[Crossref]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Mollenauer, L. F.

L. F. Mollenauer, “Physics. Nonlinear optics in fibers,” Science 302(5647), 996–997 (2003).
[Crossref] [PubMed]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Mulvaney, P.

D. Buso, L. Palmer, V. Bello, G. Mattei, M. Post, P. Mulvaney, and A. Martucci, “Self-assembled gold nanoparticle monolayers in sol-gel matrices: synthesis and gas sensing applications,” J. Mater. Chem. 19(14), 2051 (2009).
[Crossref]

Nagpal, P.

Y. Jun, P. Nagpal, and D. J. Norris, “Thermally Stable Organic-Inorganic Hybrid Photoresists for Fabrication of Photonic Band Gap Structures with Direct Laser Writing,” Adv. Mater. 20(3), 606–610 (2008).
[Crossref]

Nakanishi, S.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[Crossref]

Nicoletti, E.

Noda, S.

S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006).
[Crossref] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Norris, D. J.

Y. Jun, P. Nagpal, and D. J. Norris, “Thermally Stable Organic-Inorganic Hybrid Photoresists for Fabrication of Photonic Band Gap Structures with Direct Laser Writing,” Adv. Mater. 20(3), 606–610 (2008).
[Crossref]

O’Brien, P.

L. Zhou, D. S. Boyle, K. Govender, and P. O’Brien, “High efficiency solution infiltration routes to thin films with photonic properties,” J. Exp. Nanosci. 1(2), 221–233 (2006).
[Crossref]

Ostendorf, A.

Ovsianikov, A.

Ozin, G. A.

S. Wong, M. Deubel, F. P. Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Palmer, L.

D. Buso, L. Palmer, V. Bello, G. Mattei, M. Post, P. Mulvaney, and A. Martucci, “Self-assembled gold nanoparticle monolayers in sol-gel matrices: synthesis and gas sensing applications,” J. Mater. Chem. 19(14), 2051 (2009).
[Crossref]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Popall, M.

Post, M.

D. Buso, L. Palmer, V. Bello, G. Mattei, M. Post, P. Mulvaney, and A. Martucci, “Self-assembled gold nanoparticle monolayers in sol-gel matrices: synthesis and gas sensing applications,” J. Mater. Chem. 19(14), 2051 (2009).
[Crossref]

Prokofiev, A. V.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), 357 (1997).
[Crossref]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Rinne, S. A.

S. A. Rinne, F. García-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

P. V. Braun, S. A. Rinne, and F. García-Santamaria, “Introducing Defects in 3D Photonic Crystals: State of th Art,” Adv. Mater. 18(20), 2665–2678 (2006).
[Crossref]

Röckel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Romanato, F.

L. K. Teh, V. Furin, A. Martucci, M. Guglielmi, C. C. Wong, and F. Romanato, “Electrodeposition of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications,” Thin Solid Films 515(15), 5787–5791 (2007).
[Crossref]

Romeo, N.

M. D. Archbold, D. P. Halliday, K. Durose, T. P. A. Hase, D. S. Boyle, S. Mazzamuto, N. Romeo, and A. Bosio, “Development of low temperature approaches to device quality CdS: a modified geometry for solution growth of thin films and their characterisation,” Thin Solid Films 515(5), 2954–2957 (2007).
[Crossref]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Russell, P.

P. Russell, “Photonic band cap guidance in optical fibers,” Science 299, 358 (2003).
[Crossref] [PubMed]

Schulz, J.

Sekiguchi, T.

R. Xie, T. Sekiguchi, D. Li, D. Yang, and M. Jiang, “Precise fabrication of point defects in self-assembled three-dimensional macroporous photonic crystals,” J. Phys. Chem. B 110(3), 1107–1110 (2006).
[Crossref] [PubMed]

Serbin, J.

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral Redistribution in Spontaneous Emission from Quantum-Dot Infiltrated 3D Woodpile Photonic Crystals for Telecommunications,” Adv. Mater. 19(20), 3276–3280 (2007).
[Crossref]

J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
[Crossref]

J. Serbin and M. Gu, “Superprism phenomena in polymeric woodpile structures,” J. Appl. Phys. 98(12), 123101 (2005).
[Crossref]

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[Crossref] [PubMed]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[Crossref] [PubMed]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53-56 (1999).

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Stein, A.

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[Crossref] [PubMed]

Straub, M.

Su, Y. W.

Y. C. Lee, T. J. Kuo, C. J. Hsu, Y. W. Su, and C. C. Chen, “Fabrication of 3D Macroporous Structures of II-VI and III-V Semiconductors Using Electrochemical Deposition,” Langmuir 18(25), 9942–9946 (2002).
[Crossref]

Sun, Z. B.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[Crossref]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214 (1983).
[Crossref]

Tahan, C.

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Photonic band cap guidance in optical fibers,” Nat. Phys. 2, 856 (2006).
[Crossref]

Teh, L. K.

L. K. Teh, V. Furin, A. Martucci, M. Guglielmi, C. C. Wong, and F. Romanato, “Electrodeposition of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications,” Thin Solid Films 515(15), 5787–5791 (2007).
[Crossref]

Thomas, E. L.

M. Maldovan, E. L. Thomas, and C. W. Carter, “Layer-by-layer diamond like woodpile structure with a large photonic band gap,” Appl. Phys. Lett. 84(3), 362–364 (2004).
[Crossref]

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53-56 (1999).

van Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Ventura, M. J.

Verma, B. S.

M. Kar and B. S. Verma, “Improvements in the determination of extinction coefficients of a thin film using an envelope method,” J. Opt. A, Pure Appl. Opt. 7(10), 599–603 (2005).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), 357 (1997).
[Crossref]

Von Freymann, G.

S. Wong, M. Deubel, F. P. Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Vos, W. L.

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281(5378), 802–804 (1998).
[Crossref]

Wang, H.

Z. Lei, J. Li, Y. Ke, Y. Zhang, H. Wang, and G. He, “fabrication of macroporous cadmium sulfide with three-dimensional structure by solvothermal synthesis,” J. Mater. Chem. 11(7), 1778–1780 (2001).
[Crossref]

Wegener, M.

S. Wong, M. Deubel, F. P. Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Wijnhoven, J. E. G. J.

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281(5378), 802–804 (1998).
[Crossref]

Willard, F. P.

S. Wong, M. Deubel, F. P. Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Wong, C. C.

L. K. Teh, V. Furin, A. Martucci, M. Guglielmi, C. C. Wong, and F. Romanato, “Electrodeposition of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications,” Thin Solid Films 515(15), 5787–5791 (2007).
[Crossref]

Wong, S.

S. Wong, M. Deubel, F. P. Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

Wu, S.

B. Jia, S. Wu, J. Li, and M. Gu, “Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process,” J. Appl. Phys. 102(9), 096102 (2007).
[Crossref]

Wu, X. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Xie, R.

R. Xie, T. Sekiguchi, D. Li, D. Yang, and M. Jiang, “Precise fabrication of point defects in self-assembled three-dimensional macroporous photonic crystals,” J. Phys. Chem. B 110(3), 1107–1110 (2006).
[Crossref] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Yang, D.

R. Xie, T. Sekiguchi, D. Li, D. Yang, and M. Jiang, “Precise fabrication of point defects in self-assembled three-dimensional macroporous photonic crystals,” J. Phys. Chem. B 110(3), 1107–1110 (2006).
[Crossref] [PubMed]

Zhang, Y.

Z. Lei, J. Li, Y. Ke, Y. Zhang, H. Wang, and G. He, “fabrication of macroporous cadmium sulfide with three-dimensional structure by solvothermal synthesis,” J. Mater. Chem. 11(7), 1778–1780 (2001).
[Crossref]

Zhou, G.

Zhou, L.

L. Zhou, D. S. Boyle, K. Govender, and P. O’Brien, “High efficiency solution infiltration routes to thin films with photonic properties,” J. Exp. Nanosci. 1(2), 221–233 (2006).
[Crossref]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

Adv. Mater. (6)

P. V. Braun, S. A. Rinne, and F. García-Santamaria, “Introducing Defects in 3D Photonic Crystals: State of th Art,” Adv. Mater. 18(20), 2665–2678 (2006).
[Crossref]

S. Wong, M. Deubel, F. P. Willard, S. John, G. A. Ozin, M. Wegener, and G. Von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18(3), 265–269 (2006).
[Crossref]

J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
[Crossref]

Y. Jun, P. Nagpal, and D. J. Norris, “Thermally Stable Organic-Inorganic Hybrid Photoresists for Fabrication of Photonic Band Gap Structures with Direct Laser Writing,” Adv. Mater. 20(3), 606–610 (2008).
[Crossref]

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[Crossref]

J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral Redistribution in Spontaneous Emission from Quantum-Dot Infiltrated 3D Woodpile Photonic Crystals for Telecommunications,” Adv. Mater. 19(20), 3276–3280 (2007).
[Crossref]

Appl. Phys. Lett. (2)

M. Maldovan, E. L. Thomas, and C. W. Carter, “Layer-by-layer diamond like woodpile structure with a large photonic band gap,” Appl. Phys. Lett. 84(3), 362–364 (2004).
[Crossref]

L. M. Chuang, H. K. Fu, and Y. F. Chen, “Fabrication and optical properties of two-dimensional photonic crystals of CdSe pillars,” Appl. Phys. Lett. 86(6), 061902 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. R. Lin, C. Y. Kuo, and S. Y. Lu, “Stop band tuning of three-dimensional photonic crystals through coating of semiconductor materials,” Appl. Phys., A Mater. Sci. Process. 79(7), 1741 (2004).

J. Appl. Phys. (2)

B. Jia, S. Wu, J. Li, and M. Gu, “Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process,” J. Appl. Phys. 102(9), 096102 (2007).
[Crossref]

J. Serbin and M. Gu, “Superprism phenomena in polymeric woodpile structures,” J. Appl. Phys. 98(12), 123101 (2005).
[Crossref]

J. Cryst. Growth (1)

H. Metin and R. Esen, “Annealing studies on CBD grown US thin films,” J. Cryst. Growth 258(1-2), 141–148 (2003).
[Crossref]

J. Electrochem. Soc. (1)

J. M. Doña and J. Herrero, “Chemical bath deposition of CdS thin films: An approach to the chemical mechanism through Study of the film microstructure,” J. Electrochem. Soc. 144(11), 4081 (1997).
[Crossref]

J. Exp. Nanosci. (1)

L. Zhou, D. S. Boyle, K. Govender, and P. O’Brien, “High efficiency solution infiltration routes to thin films with photonic properties,” J. Exp. Nanosci. 1(2), 221–233 (2006).
[Crossref]

J. Mater. Chem. (2)

D. Buso, L. Palmer, V. Bello, G. Mattei, M. Post, P. Mulvaney, and A. Martucci, “Self-assembled gold nanoparticle monolayers in sol-gel matrices: synthesis and gas sensing applications,” J. Mater. Chem. 19(14), 2051 (2009).
[Crossref]

Z. Lei, J. Li, Y. Ke, Y. Zhang, H. Wang, and G. He, “fabrication of macroporous cadmium sulfide with three-dimensional structure by solvothermal synthesis,” J. Mater. Chem. 11(7), 1778–1780 (2001).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

M. Kar and B. S. Verma, “Improvements in the determination of extinction coefficients of a thin film using an envelope method,” J. Opt. A, Pure Appl. Opt. 7(10), 599–603 (2005).
[Crossref]

J. Phys. Chem. B (1)

R. Xie, T. Sekiguchi, D. Li, D. Yang, and M. Jiang, “Precise fabrication of point defects in self-assembled three-dimensional macroporous photonic crystals,” J. Phys. Chem. B 110(3), 1107–1110 (2006).
[Crossref] [PubMed]

J. Phys. E Sci. Instrum. (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214 (1983).
[Crossref]

Langmuir (1)

Y. C. Lee, T. J. Kuo, C. J. Hsu, Y. W. Su, and C. C. Chen, “Fabrication of 3D Macroporous Structures of II-VI and III-V Semiconductors Using Electrochemical Deposition,” Langmuir 18(25), 9942–9946 (2002).
[Crossref]

Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres (1)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature  405, 437-440 (2000).

Mater. Chem. Phys. (1)

R. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Mater. Chem. Phys. 65(1), 1–31 (2000).
[Crossref]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Nat. Photonics (1)

S. A. Rinne, F. García-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008).
[Crossref]

Nat. Phys. (1)

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Photonic band cap guidance in optical fibers,” Nat. Phys. 2, 856 (2006).
[Crossref]

Nature (3)

S. Y. Lin, J. G. Fleming, D. L. Heterington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[Crossref]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erksine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. L. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53-56 (1999).

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (1)

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), 357 (1997).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Science (6)

P. Russell, “Photonic band cap guidance in optical fibers,” Science 299, 358 (2003).
[Crossref] [PubMed]

S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006).
[Crossref] [PubMed]

L. F. Mollenauer, “Physics. Nonlinear optics in fibers,” Science 302(5647), 996–997 (2003).
[Crossref] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[Crossref] [PubMed]

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281(5378), 802–804 (1998).
[Crossref]

Thin Solid Films (3)

L. K. Teh, V. Furin, A. Martucci, M. Guglielmi, C. C. Wong, and F. Romanato, “Electrodeposition of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications,” Thin Solid Films 515(15), 5787–5791 (2007).
[Crossref]

E. Çetinörgü, C. Gümüş, and R. Esen, “Effects of deposition time and temperature on the optical properties of air-annealed chemical bath deposited CdS films,” Thin Solid Films 515(4), 1688–1693 (2006).
[Crossref]

M. D. Archbold, D. P. Halliday, K. Durose, T. P. A. Hase, D. S. Boyle, S. Mazzamuto, N. Romeo, and A. Bosio, “Development of low temperature approaches to device quality CdS: a modified geometry for solution growth of thin films and their characterisation,” Thin Solid Films 515(5), 2954–2957 (2007).
[Crossref]

Other (1)

MPB software package, http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) SEM image of the 60x60 μm2 Ormocer® woodpile structure fabricated using a TPP approach. The schematic in b) shows that the rod spacing a and the inter-layer spacing d are designed according to an f.c.c. space group (d/a = √2). The SEM image in c) shows a particular of the woodpile structure coated with CdS after deposition of an 80 nm layer. Schematic in d) is an in-scale reconstruction of the final CdS coated woodpile.
Fig. 2
Fig. 2 a) Optical transmittance of CdS films in the 300-1100 nm wavelength range during the sequential deposition of 4 semiconductor layers. Each layer is 200 nm thick. b) X-ray diffraction pattern of an 800 nm thick CdS multilayer showing reflections of CdS hexagonal lattice arrangement.
Fig. 3
Fig. 3 Measured transmission spectra of the PhC during successive CdS depositions. The raw spectra were collected using the substrate as the reference. The PBG shifts according to the increasing CdS layer thickness on the structure rod surface in the 0–80mn range.
Fig. 4
Fig. 4 a) Simulated position of the woodpile PBG (solid line) compared with the measured experimental values (squares) as a function of CdS layer thickness. b) Predicted evolution of neff with CdS layer thickness on the Ormocer® woodpile rods.

Metrics