S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref]
[PubMed]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[Crossref]
[PubMed]
B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]
[PubMed]
V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref]
[PubMed]
A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[Crossref]
V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, 115–121 (2005).
[Crossref]
S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref]
[PubMed]
S. Zou and G. C. Schatz, “Narrow plasmonic/hotonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[Crossref]
[PubMed]
L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B, 107, 7343–7350 (2003).
[Crossref]
A. A. Lazarides and G. C. Schatz, “DNA-linked metal nanosphere materials: structural basis for the optical properties,” J. Phys. Chem. B 104, 460–467 (2000).
[Crossref]
V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993).
[Crossref]
Draine B T, “The discrete-dipole approximation and its application to interstellar graphite grains” Astrophys. J. 333, 848–872 (1988).
[Crossref]
M. Inoue, K. ohtaka, and S. Yanagawa, “Light scattering from macroscopic spherical bodies. 11. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–699 (1982).
[Crossref]
U. Laor and G. C. Schatz, “The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances,” Chem. Phys. Lett. 82, 566–570 (1981).
[Crossref]
R. G. Newton, “Optical therem and beyond,” Am. J. Phys. 44, 639–642 (1976).
[Crossref]
E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]
U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]
B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]
[PubMed]
Draine B T, “The discrete-dipole approximation and its application to interstellar graphite grains” Astrophys. J. 333, 848–872 (1988).
[Crossref]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[Crossref]
[PubMed]
S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref]
[PubMed]
B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]
[PubMed]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[Crossref]
[PubMed]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[Crossref]
[PubMed]
A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[Crossref]
S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref]
[PubMed]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[Crossref]
[PubMed]
A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[Crossref]
U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]
A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[Crossref]
V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref]
[PubMed]
S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref]
[PubMed]
D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E. D. Palik (Academic Press, New York, 1985), pp. 350.
M. Inoue, K. ohtaka, and S. Yanagawa, “Light scattering from macroscopic spherical bodies. 11. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–699 (1982).
[Crossref]
S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref]
[PubMed]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[Crossref]
[PubMed]
L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B, 107, 7343–7350 (2003).
[Crossref]
V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref]
[PubMed]
U. Laor and G. C. Schatz, “The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances,” Chem. Phys. Lett. 82, 566–570 (1981).
[Crossref]
A. A. Lazarides and G. C. Schatz, “DNA-linked metal nanosphere materials: structural basis for the optical properties,” J. Phys. Chem. B 104, 460–467 (2000).
[Crossref]
D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E. D. Palik (Academic Press, New York, 1985), pp. 350.
V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, 115–121 (2005).
[Crossref]
V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993).
[Crossref]
A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[Crossref]
R. G. Newton, “Optical therem and beyond,” Am. J. Phys. 44, 639–642 (1976).
[Crossref]
M. Inoue, K. ohtaka, and S. Yanagawa, “Light scattering from macroscopic spherical bodies. 11. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–699 (1982).
[Crossref]
D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E. D. Palik (Academic Press, New York, 1985), pp. 350.
S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref]
[PubMed]
E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]
E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]
S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref]
[PubMed]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[Crossref]
[PubMed]
S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref]
[PubMed]
S. Zou and G. C. Schatz, “Narrow plasmonic/hotonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[Crossref]
[PubMed]
L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B, 107, 7343–7350 (2003).
[Crossref]
A. A. Lazarides and G. C. Schatz, “DNA-linked metal nanosphere materials: structural basis for the optical properties,” J. Phys. Chem. B 104, 460–467 (2000).
[Crossref]
U. Laor and G. C. Schatz, “The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances,” Chem. Phys. Lett. 82, 566–570 (1981).
[Crossref]
S. Zou and G. C. Schatz, “Response to “Comment on ‘Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’” [J. Chem. Phys. 120, 10871 (2004)]” J. Chem. Phys.122, 097102 (2005).
[Crossref]
V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref]
[PubMed]
A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[Crossref]
A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[Crossref]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[Crossref]
[PubMed]
S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref]
[PubMed]
M. Inoue, K. ohtaka, and S. Yanagawa, “Light scattering from macroscopic spherical bodies. 11. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–699 (1982).
[Crossref]
L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B, 107, 7343–7350 (2003).
[Crossref]
S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref]
[PubMed]
S. Zou and G. C. Schatz, “Narrow plasmonic/hotonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[Crossref]
[PubMed]
S. Zou and G. C. Schatz, “Response to “Comment on ‘Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’” [J. Chem. Phys. 120, 10871 (2004)]” J. Chem. Phys.122, 097102 (2005).
[Crossref]
R. G. Newton, “Optical therem and beyond,” Am. J. Phys. 44, 639–642 (1976).
[Crossref]
E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]
Draine B T, “The discrete-dipole approximation and its application to interstellar graphite grains” Astrophys. J. 333, 848–872 (1988).
[Crossref]
U. Laor and G. C. Schatz, “The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances,” Chem. Phys. Lett. 82, 566–570 (1981).
[Crossref]
S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref]
[PubMed]
S. Zou and G. C. Schatz, “Narrow plasmonic/hotonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[Crossref]
[PubMed]
V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993).
[Crossref]
V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, 115–121 (2005).
[Crossref]
L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B, 107, 7343–7350 (2003).
[Crossref]
A. A. Lazarides and G. C. Schatz, “DNA-linked metal nanosphere materials: structural basis for the optical properties,” J. Phys. Chem. B 104, 460–467 (2000).
[Crossref]
U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]
M. Inoue, K. ohtaka, and S. Yanagawa, “Light scattering from macroscopic spherical bodies. 11. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–699 (1982).
[Crossref]
A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[Crossref]
S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref]
[PubMed]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[Crossref]
[PubMed]
B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]
[PubMed]
V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref]
[PubMed]
D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E. D. Palik (Academic Press, New York, 1985), pp. 350.
S. Zou and G. C. Schatz, “Response to “Comment on ‘Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’” [J. Chem. Phys. 120, 10871 (2004)]” J. Chem. Phys.122, 097102 (2005).
[Crossref]