Abstract

A Stressed Liquid Crystal (SLC) is proposed for application as a single panel retardance element in a Fourier transform (FT) spectrometer. Volume alignment in SLCs increase the maximum retardance and subsequent FT resolution by enabling longer path lengths through the liquid crystal material. Here, the relationship between transmission and shear for thick SLC cells is characterized and the spectral resolution using the SLC phase modulators in a single and double pass FT spectrometer system is quantified. For a 100 μm thick SLC, the resolution of a single frequency peak was observed at 60 nm full width half maximum.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiple frequency resolution using stressed liquid crystal as a Fourier transform spectrometer

Leslie Shelton, John McMurdy, and Gregory Crawford
Appl. Opt. 48(27) 5138-5142 (2009)

Fourier-transform spectroscopy using liquid-crystal technology

David J. Funk and David S. Moore
Opt. Lett. 22(23) 1799-1801 (1997)

Tunable grating based on stressed liquid crystal

Shih-Wei Ke, Tsung-Hsien Lin, and Andy Y.-G. Fuh
Opt. Express 16(3) 2062-2067 (2008)

References

  • View by:
  • |
  • |
  • |

  1. O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, “Miniaturized time-scanning Fourier transform spectrometer based on silicon technology,” Opt. Lett. 24, 1705–1707, (1999).
    [Crossref]
  2. S. D. Collins, R. L. Smith, C. Gonzalez, K. P. Stewart, J. G. Hagopian, and J. M. Sirota, “Fourier-transform optical microsystems,” Opt. Lett. 24, 844–846 (1999).
    [Crossref]
  3. D. Komisarek, K. Reichard, D. Merdes, D. Lysak, P. Lam, S. D. Wu, and S. Z. Yin, “High-performance nonscan-ning Fourier-transform spectrometer that uses a Wollaston prism array,” Appl. Opt. 43, 3983–3988 (2004).
    [Crossref] [PubMed]
  4. K. Itoh, T. Inoue, T. Ohta, and Y. Ichioka, “Liquid-crystal imaging Fourier-spectrometer array,” Opt. Lett. 15, 652–654 (1990).
    [Crossref] [PubMed]
  5. Y. Q. Lu, F. Du, Y. H. Wu, and S. T. Wum, “Liquid-crystal-based Fourier optical spectrum analyzer without moving parts,” Jpn. J. Appl. Phy. 44, 291–293 (2005).
    [Crossref]
  6. T. H. Chao, H. Zhou, X. Xia, and S. Serati, “Near IR electro-optic imaging Fourier transform spectrometer,” Proc. of SPIE 5816, 163–172, (2005).
    [Crossref]
  7. J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 2005.
    [Crossref]
  8. S.W. Ke, T.H. Lin, and Andy Y. G. Fuh, “Tunable grating based on stressed liquid crystal,” Opt. Express 16, 2062–2067 (2008).
    [Crossref] [PubMed]
  9. G. Zhang, J. L. West, A. Glushchenko, I. Smalyukh, and O. Lavrentovich, “Shearing effects of stressed liquid crystals with various liquid crystal domain sizes,” SID Digest of Technology Papers 1, 691–693 (2005).
    [Crossref]

2008 (1)

2005 (4)

G. Zhang, J. L. West, A. Glushchenko, I. Smalyukh, and O. Lavrentovich, “Shearing effects of stressed liquid crystals with various liquid crystal domain sizes,” SID Digest of Technology Papers 1, 691–693 (2005).
[Crossref]

Y. Q. Lu, F. Du, Y. H. Wu, and S. T. Wum, “Liquid-crystal-based Fourier optical spectrum analyzer without moving parts,” Jpn. J. Appl. Phy. 44, 291–293 (2005).
[Crossref]

T. H. Chao, H. Zhou, X. Xia, and S. Serati, “Near IR electro-optic imaging Fourier transform spectrometer,” Proc. of SPIE 5816, 163–172, (2005).
[Crossref]

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 2005.
[Crossref]

2004 (1)

1999 (2)

1990 (1)

Chao, T. H.

T. H. Chao, H. Zhou, X. Xia, and S. Serati, “Near IR electro-optic imaging Fourier transform spectrometer,” Proc. of SPIE 5816, 163–172, (2005).
[Crossref]

Collins, S. D.

de Rooij, N. F.

Du, F.

Y. Q. Lu, F. Du, Y. H. Wu, and S. T. Wum, “Liquid-crystal-based Fourier optical spectrum analyzer without moving parts,” Jpn. J. Appl. Phy. 44, 291–293 (2005).
[Crossref]

Fuh, Andy Y. G.

Glushchenko, A.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 2005.
[Crossref]

G. Zhang, J. L. West, A. Glushchenko, I. Smalyukh, and O. Lavrentovich, “Shearing effects of stressed liquid crystals with various liquid crystal domain sizes,” SID Digest of Technology Papers 1, 691–693 (2005).
[Crossref]

Gonzalez, C.

Hagopian, J. G.

Herzig, H. P.

Ichioka, Y.

Inoue, T.

Itoh, K.

Ke, S.W.

Komisarek, D.

Lam, P.

Lavrentovich, O.

G. Zhang, J. L. West, A. Glushchenko, I. Smalyukh, and O. Lavrentovich, “Shearing effects of stressed liquid crystals with various liquid crystal domain sizes,” SID Digest of Technology Papers 1, 691–693 (2005).
[Crossref]

Lin, T.H.

Lu, Y. Q.

Y. Q. Lu, F. Du, Y. H. Wu, and S. T. Wum, “Liquid-crystal-based Fourier optical spectrum analyzer without moving parts,” Jpn. J. Appl. Phy. 44, 291–293 (2005).
[Crossref]

Lysak, D.

Manzardo, O.

Marxer, C. R.

Merdes, D.

Ohta, T.

Reichard, K.

Reznikov, Y.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 2005.
[Crossref]

Serati, S.

T. H. Chao, H. Zhou, X. Xia, and S. Serati, “Near IR electro-optic imaging Fourier transform spectrometer,” Proc. of SPIE 5816, 163–172, (2005).
[Crossref]

Sirota, J. M.

Smalyukh, I.

G. Zhang, J. L. West, A. Glushchenko, I. Smalyukh, and O. Lavrentovich, “Shearing effects of stressed liquid crystals with various liquid crystal domain sizes,” SID Digest of Technology Papers 1, 691–693 (2005).
[Crossref]

Smith, R. L.

Stewart, K. P.

West, J. L.

G. Zhang, J. L. West, A. Glushchenko, I. Smalyukh, and O. Lavrentovich, “Shearing effects of stressed liquid crystals with various liquid crystal domain sizes,” SID Digest of Technology Papers 1, 691–693 (2005).
[Crossref]

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 2005.
[Crossref]

Wu, S. D.

Wu, Y. H.

Y. Q. Lu, F. Du, Y. H. Wu, and S. T. Wum, “Liquid-crystal-based Fourier optical spectrum analyzer without moving parts,” Jpn. J. Appl. Phy. 44, 291–293 (2005).
[Crossref]

Wum, S. T.

Y. Q. Lu, F. Du, Y. H. Wu, and S. T. Wum, “Liquid-crystal-based Fourier optical spectrum analyzer without moving parts,” Jpn. J. Appl. Phy. 44, 291–293 (2005).
[Crossref]

Xia, X.

T. H. Chao, H. Zhou, X. Xia, and S. Serati, “Near IR electro-optic imaging Fourier transform spectrometer,” Proc. of SPIE 5816, 163–172, (2005).
[Crossref]

Yin, S. Z.

Zhang, G.

G. Zhang, J. L. West, A. Glushchenko, I. Smalyukh, and O. Lavrentovich, “Shearing effects of stressed liquid crystals with various liquid crystal domain sizes,” SID Digest of Technology Papers 1, 691–693 (2005).
[Crossref]

Zhang, G. Q.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 2005.
[Crossref]

Zhou, H.

T. H. Chao, H. Zhou, X. Xia, and S. Serati, “Near IR electro-optic imaging Fourier transform spectrometer,” Proc. of SPIE 5816, 163–172, (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phy. Lett. (1)

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 2005.
[Crossref]

Jpn. J. Appl. Phy. (1)

Y. Q. Lu, F. Du, Y. H. Wu, and S. T. Wum, “Liquid-crystal-based Fourier optical spectrum analyzer without moving parts,” Jpn. J. Appl. Phy. 44, 291–293 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. of SPIE (1)

T. H. Chao, H. Zhou, X. Xia, and S. Serati, “Near IR electro-optic imaging Fourier transform spectrometer,” Proc. of SPIE 5816, 163–172, (2005).
[Crossref]

SID Digest of Technology Papers (1)

G. Zhang, J. L. West, A. Glushchenko, I. Smalyukh, and O. Lavrentovich, “Shearing effects of stressed liquid crystals with various liquid crystal domain sizes,” SID Digest of Technology Papers 1, 691–693 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Transmission of a 100 μm SLC cell as a function shear over a collection angle of 5°.
Fig. 2.
Fig. 2. Intensity versus voltage curve from a single pass system with λ = 632.8 nm 5 mW laser input (a), interferogram created using fit to establish voltage to retardance relation (b), and modeled interferogram assuming a perfect SLC retardance filter of thickness 100 μm, LC 5CB and 85 % LC vs. polymer (c).
Fig. 3.
Fig. 3. Power spectra calculated from the experimental (a) and theoretical (b) interferogram
Fig. 4.
Fig. 4. Setup of a double pass FT system with SLC cell under shear (S), Mirrors (M), Photodiode (D), Polarizer (P) and Analyzer (A)
Fig. 5.
Fig. 5. Interferogram of an SLC in a double pass system with λ = 532 nm 20 mW laser input (a), intensity corrected interferogram minimizing effects of scattering (b), and FT power spectra of intensity corrected interferogram (c). INSET: FT of non-intensity corrected interferogram highlighting scattering deformations of spectra

Metrics