H. Im, A. Lesuffleur, N. C. Lindquist, and S. H. Oh, “Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing,” Anal. Chem. 81(8), 2854–2859 ( 2009).
[Crossref]
[PubMed]
J. Ji, J. C. Yang, and D. N. Larson, “Nanohole arrays of mixed designs and microwriting for simultaneous and multiple protein binding studies,” Biosens. Bioelectron. 24(9), 2847–2852 ( 2009).
[Crossref]
[PubMed]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
X. Wu, J. Zhang, J. Chen, C. Zhao, and Q. Gong, “Refractive index sensor based on surface-plasmon interference,” Optim. Lett. 34(3), 392 ( 2009).
[Crossref]
M. H. Lee, H. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 ( 2009).
[Crossref]
[PubMed]
Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 ( 2009).
[Crossref]
[PubMed]
J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 ( 2009).
[Crossref]
Z. Fu, Q. Gan, K Gao, G Wang, Z Pan, and F Bartoli,. “Numerical Investigation of a Bidirectional Wave Coupler Based on Surface Plasmonic Polarition Bragg Gratings in Near Infrared Spectrum,” J. Lightwave Technol. 26, 3699 ( 2008).
[Crossref]
H. W. Kihm, G. K. Lee, D. S. Kim, J. H. Kang, and P. Q. Han, “Control of surface Plasmon generation efficiency by silt-width tuning,” Appl. Phys. Lett. 92(5), 051115 ( 2008).
[Crossref]
Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metal grating structures,” Phys. Rev. Lett. 100(25), 256803 ( 2008).
[Crossref]
[PubMed]
E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 ( 2008).
[Crossref]
[PubMed]
A. Bilenca, J. Cao, M. Colice, A. Ozcan, B. Bouma, L. Raftery, and G. Tearney, “Fluorescence interferometry: principles and applications in biology,” Ann. N. Y. Acad. Sci. 1130(1), 68–77 ( 2008).
[Crossref]
[PubMed]
M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral Self-Interference Fluorescence Microscopy for Subcellular Imaging,” IEEE J. Sel. Top. Quantum Electron. 14(1), 217–225 ( 2008).
[Crossref]
J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 ( 2008).
[Crossref]
[PubMed]
G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 ( 2008).
[Crossref]
J. Ji, J. G. O’Connell, D. J. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 ( 2008).
[Crossref]
[PubMed]
J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 ( 2008).
[Crossref]
[PubMed]
M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 ( 2008).
[Crossref]
[PubMed]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 ( 2008).
[Crossref]
[PubMed]
J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 ( 2008).
[Crossref]
[PubMed]
A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced Plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 ( 2007).
[Crossref]
A. De Leebeeck, L. K. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 ( 2007).
[Crossref]
[PubMed]
J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 ( 2007).
[Crossref]
[PubMed]
D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 ( 2007).
[Crossref]
[PubMed]
V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon interferometry: measuring group velocity of surface plasmons,” Optim. Lett. 32(10), 1235 ( 2007).
[Crossref]
F. J. García de Abajo and F. J Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 ( 2007).
[Crossref]
A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 ( 2006).
[Crossref]
P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 ( 2006).
[Crossref]
P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. B 23(7), 1608 ( 2006).
[Crossref]
L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 ( 2006).
[Crossref]
[PubMed]
K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface Plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Optim. Lett. 31(10), 1528 ( 2006).
[Crossref]
M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 ( 2006).
[Crossref]
[PubMed]
H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 ( 2005).
[Crossref]
[PubMed]
M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 ( 2004).
[Crossref]
[PubMed]
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 ( 2004).
[Crossref]
[PubMed]
F. Prieto, B. Sepulveda, A. Calle, and A LloberaC Dominguez, A Abad, A Montoya, and L. M Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 ( 2003).
[Crossref]
F. Prieto, B. Sepulveda, A. Calle, and A LloberaC Dominguez, A Abad, A Montoya, and L. M Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 ( 2003).
[Crossref]
F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dommguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 ( 2003).
[Crossref]
A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42(28), 5649–5660 ( 2003).
[Crossref]
[PubMed]
D. Braun and P. Fromherz, “Fluorescence interferometry of neuronal cell adhesion on microstructured silicon,” Phys. Rev. Lett. 81(23), 5241–5244 ( 1998).
[Crossref]
E. F. Schipper, A. M. Brugman, L. M. Lechuga, R. P. H. Kooyman, J. Greve, and C. Dominguez, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B Chem. 40(2-3), 147–153 ( 1997).
[Crossref]
F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 ( 1997).
[Crossref]
F. Prieto, B. Sepulveda, A. Calle, and A LloberaC Dominguez, A Abad, A Montoya, and L. M Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 ( 2003).
[Crossref]
H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 ( 2005).
[Crossref]
[PubMed]
M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 ( 2008).
[Crossref]
[PubMed]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 ( 2008).
[Crossref]
[PubMed]
A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 ( 2006).
[Crossref]
Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 ( 2009).
[Crossref]
[PubMed]
Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metal grating structures,” Phys. Rev. Lett. 100(25), 256803 ( 2008).
[Crossref]
[PubMed]
E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 ( 2008).
[Crossref]
[PubMed]
A. Bilenca, J. Cao, M. Colice, A. Ozcan, B. Bouma, L. Raftery, and G. Tearney, “Fluorescence interferometry: principles and applications in biology,” Ann. N. Y. Acad. Sci. 1130(1), 68–77 ( 2008).
[Crossref]
[PubMed]
J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 ( 2008).
[Crossref]
[PubMed]
H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 ( 2005).
[Crossref]
[PubMed]
D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 ( 2007).
[Crossref]
[PubMed]
A. Bilenca, J. Cao, M. Colice, A. Ozcan, B. Bouma, L. Raftery, and G. Tearney, “Fluorescence interferometry: principles and applications in biology,” Ann. N. Y. Acad. Sci. 1130(1), 68–77 ( 2008).
[Crossref]
[PubMed]
D. Braun and P. Fromherz, “Fluorescence interferometry of neuronal cell adhesion on microstructured silicon,” Phys. Rev. Lett. 81(23), 5241–5244 ( 1998).
[Crossref]
A. De Leebeeck, L. K. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 ( 2007).
[Crossref]
[PubMed]
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 ( 2004).
[Crossref]
[PubMed]
F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 ( 1997).
[Crossref]
E. F. Schipper, A. M. Brugman, L. M. Lechuga, R. P. H. Kooyman, J. Greve, and C. Dominguez, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B Chem. 40(2-3), 147–153 ( 1997).
[Crossref]
E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 ( 2008).
[Crossref]
[PubMed]
F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dommguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 ( 2003).
[Crossref]
F. Prieto, B. Sepulveda, A. Calle, and A LloberaC Dominguez, A Abad, A Montoya, and L. M Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 ( 2003).
[Crossref]
F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 ( 1997).
[Crossref]
L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 ( 2006).
[Crossref]
[PubMed]
A. Bilenca, J. Cao, M. Colice, A. Ozcan, B. Bouma, L. Raftery, and G. Tearney, “Fluorescence interferometry: principles and applications in biology,” Ann. N. Y. Acad. Sci. 1130(1), 68–77 ( 2008).
[Crossref]
[PubMed]
M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 ( 2004).
[Crossref]
[PubMed]
J. Ji, J. G. O’Connell, D. J. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 ( 2008).
[Crossref]
[PubMed]
X. Wu, J. Zhang, J. Chen, C. Zhao, and Q. Gong, “Refractive index sensor based on surface-plasmon interference,” Optim. Lett. 34(3), 392 ( 2009).
[Crossref]
A. Bilenca, J. Cao, M. Colice, A. Ozcan, B. Bouma, L. Raftery, and G. Tearney, “Fluorescence interferometry: principles and applications in biology,” Ann. N. Y. Acad. Sci. 1130(1), 68–77 ( 2008).
[Crossref]
[PubMed]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
A. De Leebeeck, L. K. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 ( 2007).
[Crossref]
[PubMed]
A. De Leebeeck, L. K. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 ( 2007).
[Crossref]
[PubMed]
V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon interferometry: measuring group velocity of surface plasmons,” Optim. Lett. 32(10), 1235 ( 2007).
[Crossref]
Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 ( 2009).
[Crossref]
[PubMed]
Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metal grating structures,” Phys. Rev. Lett. 100(25), 256803 ( 2008).
[Crossref]
[PubMed]
V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon interferometry: measuring group velocity of surface plasmons,” Optim. Lett. 32(10), 1235 ( 2007).
[Crossref]
A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 ( 2006).
[Crossref]
M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral Self-Interference Fluorescence Microscopy for Subcellular Imaging,” IEEE J. Sel. Top. Quantum Electron. 14(1), 217–225 ( 2008).
[Crossref]
F. Prieto, B. Sepulveda, A. Calle, and A LloberaC Dominguez, A Abad, A Montoya, and L. M Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 ( 2003).
[Crossref]
E. F. Schipper, A. M. Brugman, L. M. Lechuga, R. P. H. Kooyman, J. Greve, and C. Dominguez, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B Chem. 40(2-3), 147–153 ( 1997).
[Crossref]
F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dommguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 ( 2003).
[Crossref]
A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 ( 2006).
[Crossref]
H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 ( 2005).
[Crossref]
[PubMed]
V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon interferometry: measuring group velocity of surface plasmons,” Optim. Lett. 32(10), 1235 ( 2007).
[Crossref]
F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 ( 1997).
[Crossref]
H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 ( 2005).
[Crossref]
[PubMed]
G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 ( 2008).
[Crossref]
K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface Plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Optim. Lett. 31(10), 1528 ( 2006).
[Crossref]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 ( 2004).
[Crossref]
[PubMed]
F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 ( 1997).
[Crossref]
D. Braun and P. Fromherz, “Fluorescence interferometry of neuronal cell adhesion on microstructured silicon,” Phys. Rev. Lett. 81(23), 5241–5244 ( 1998).
[Crossref]
Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metal grating structures,” Phys. Rev. Lett. 100(25), 256803 ( 2008).
[Crossref]
[PubMed]
Z. Fu, Q. Gan, K Gao, G Wang, Z Pan, and F Bartoli,. “Numerical Investigation of a Bidirectional Wave Coupler Based on Surface Plasmonic Polarition Bragg Gratings in Near Infrared Spectrum,” J. Lightwave Technol. 26, 3699 ( 2008).
[Crossref]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 ( 2006).
[Crossref]
Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 ( 2009).
[Crossref]
[PubMed]
Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metal grating structures,” Phys. Rev. Lett. 100(25), 256803 ( 2008).
[Crossref]
[PubMed]
Z. Fu, Q. Gan, K Gao, G Wang, Z Pan, and F Bartoli,. “Numerical Investigation of a Bidirectional Wave Coupler Based on Surface Plasmonic Polarition Bragg Gratings in Near Infrared Spectrum,” J. Lightwave Technol. 26, 3699 ( 2008).
[Crossref]
M. H. Lee, H. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 ( 2009).
[Crossref]
[PubMed]
F. J. García de Abajo and F. J Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 ( 2007).
[Crossref]
H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 ( 2005).
[Crossref]
[PubMed]
F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 ( 1997).
[Crossref]
E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 ( 2008).
[Crossref]
[PubMed]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral Self-Interference Fluorescence Microscopy for Subcellular Imaging,” IEEE J. Sel. Top. Quantum Electron. 14(1), 217–225 ( 2008).
[Crossref]
E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 ( 2008).
[Crossref]
[PubMed]
L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 ( 2006).
[Crossref]
[PubMed]
M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral Self-Interference Fluorescence Microscopy for Subcellular Imaging,” IEEE J. Sel. Top. Quantum Electron. 14(1), 217–225 ( 2008).
[Crossref]
X. Wu, J. Zhang, J. Chen, C. Zhao, and Q. Gong, “Refractive index sensor based on surface-plasmon interference,” Optim. Lett. 34(3), 392 ( 2009).
[Crossref]
E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 ( 2008).
[Crossref]
[PubMed]
A. De Leebeeck, L. K. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 ( 2007).
[Crossref]
[PubMed]
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 ( 2004).
[Crossref]
[PubMed]
M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 ( 2008).
[Crossref]
[PubMed]
M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 ( 2006).
[Crossref]
[PubMed]
A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42(28), 5649–5660 ( 2003).
[Crossref]
[PubMed]
E. F. Schipper, A. M. Brugman, L. M. Lechuga, R. P. H. Kooyman, J. Greve, and C. Dominguez, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B Chem. 40(2-3), 147–153 ( 1997).
[Crossref]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 ( 2008).
[Crossref]
[PubMed]
H. W. Kihm, G. K. Lee, D. S. Kim, J. H. Kang, and P. Q. Han, “Control of surface Plasmon generation efficiency by silt-width tuning,” Appl. Phys. Lett. 92(5), 051115 ( 2008).
[Crossref]
J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 ( 2007).
[Crossref]
[PubMed]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 ( 2008).
[Crossref]
[PubMed]
A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 ( 2006).
[Crossref]
J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 ( 2008).
[Crossref]
[PubMed]
H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 ( 2005).
[Crossref]
[PubMed]
P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. B 23(7), 1608 ( 2006).
[Crossref]
P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 ( 2006).
[Crossref]
G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 ( 2008).
[Crossref]
H. Im, A. Lesuffleur, N. C. Lindquist, and S. H. Oh, “Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing,” Anal. Chem. 81(8), 2854–2859 ( 2009).
[Crossref]
[PubMed]
A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced Plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 ( 2007).
[Crossref]
M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral Self-Interference Fluorescence Microscopy for Subcellular Imaging,” IEEE J. Sel. Top. Quantum Electron. 14(1), 217–225 ( 2008).
[Crossref]
J. Ji, J. C. Yang, and D. N. Larson, “Nanohole arrays of mixed designs and microwriting for simultaneous and multiple protein binding studies,” Biosens. Bioelectron. 24(9), 2847–2852 ( 2009).
[Crossref]
[PubMed]
J. Ji, J. G. O’Connell, D. J. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 ( 2008).
[Crossref]
[PubMed]
J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 ( 2008).
[Crossref]
[PubMed]
D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 ( 2007).
[Crossref]
[PubMed]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
H. W. Kihm, G. K. Lee, D. S. Kim, J. H. Kang, and P. Q. Han, “Control of surface Plasmon generation efficiency by silt-width tuning,” Appl. Phys. Lett. 92(5), 051115 ( 2008).
[Crossref]
F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 ( 1997).
[Crossref]
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 ( 2004).
[Crossref]
[PubMed]
H. W. Kihm, G. K. Lee, D. S. Kim, J. H. Kang, and P. Q. Han, “Control of surface Plasmon generation efficiency by silt-width tuning,” Appl. Phys. Lett. 92(5), 051115 ( 2008).
[Crossref]
H. W. Kihm, G. K. Lee, D. S. Kim, J. H. Kang, and P. Q. Han, “Control of surface Plasmon generation efficiency by silt-width tuning,” Appl. Phys. Lett. 92(5), 051115 ( 2008).
[Crossref]
E. F. Schipper, A. M. Brugman, L. M. Lechuga, R. P. H. Kooyman, J. Greve, and C. Dominguez, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B Chem. 40(2-3), 147–153 ( 1997).
[Crossref]
A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 ( 2006).
[Crossref]
A. De Leebeeck, L. K. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 ( 2007).
[Crossref]
[PubMed]
D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 ( 2007).
[Crossref]
[PubMed]
H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 ( 2005).
[Crossref]
[PubMed]
F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 ( 1997).
[Crossref]
P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 ( 2006).
[Crossref]
P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. B 23(7), 1608 ( 2006).
[Crossref]
J. Ji, J. C. Yang, and D. N. Larson, “Nanohole arrays of mixed designs and microwriting for simultaneous and multiple protein binding studies,” Biosens. Bioelectron. 24(9), 2847–2852 ( 2009).
[Crossref]
[PubMed]
J. Ji, J. G. O’Connell, D. J. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 ( 2008).
[Crossref]
[PubMed]
J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 ( 2008).
[Crossref]
[PubMed]
D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 ( 2007).
[Crossref]
[PubMed]
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 ( 2004).
[Crossref]
[PubMed]
F. Prieto, B. Sepulveda, A. Calle, and A LloberaC Dominguez, A Abad, A Montoya, and L. M Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 ( 2003).
[Crossref]
F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dommguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 ( 2003).
[Crossref]
E. F. Schipper, A. M. Brugman, L. M. Lechuga, R. P. H. Kooyman, J. Greve, and C. Dominguez, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B Chem. 40(2-3), 147–153 ( 1997).
[Crossref]
H. W. Kihm, G. K. Lee, D. S. Kim, J. H. Kang, and P. Q. Han, “Control of surface Plasmon generation efficiency by silt-width tuning,” Appl. Phys. Lett. 92(5), 051115 ( 2008).
[Crossref]
M. H. Lee, H. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 ( 2009).
[Crossref]
[PubMed]
J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 ( 2007).
[Crossref]
[PubMed]
M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 ( 2006).
[Crossref]
[PubMed]
A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 ( 2006).
[Crossref]
H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 ( 2005).
[Crossref]
[PubMed]
H. Im, A. Lesuffleur, N. C. Lindquist, and S. H. Oh, “Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing,” Anal. Chem. 81(8), 2854–2859 ( 2009).
[Crossref]
[PubMed]
A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced Plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 ( 2007).
[Crossref]
J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 ( 2008).
[Crossref]
[PubMed]
H. Im, A. Lesuffleur, N. C. Lindquist, and S. H. Oh, “Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing,” Anal. Chem. 81(8), 2854–2859 ( 2009).
[Crossref]
[PubMed]
A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced Plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 ( 2007).
[Crossref]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
F. Prieto, B. Sepulveda, A. Calle, and A LloberaC Dominguez, A Abad, A Montoya, and L. M Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 ( 2003).
[Crossref]
F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dommguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 ( 2003).
[Crossref]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 ( 2008).
[Crossref]
[PubMed]
M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 ( 2006).
[Crossref]
[PubMed]
M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 ( 2006).
[Crossref]
[PubMed]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 ( 2008).
[Crossref]
[PubMed]
D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 ( 2007).
[Crossref]
[PubMed]
J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 ( 2008).
[Crossref]
[PubMed]
L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 ( 2006).
[Crossref]
[PubMed]
F. Prieto, B. Sepulveda, A. Calle, and A LloberaC Dominguez, A Abad, A Montoya, and L. M Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 ( 2003).
[Crossref]
G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 ( 2008).
[Crossref]
E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 ( 2008).
[Crossref]
[PubMed]
M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 ( 2008).
[Crossref]
[PubMed]
M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 ( 2006).
[Crossref]
[PubMed]
J. Ji, J. G. O’Connell, D. J. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 ( 2008).
[Crossref]
[PubMed]
M. H. Lee, H. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 ( 2009).
[Crossref]
[PubMed]
J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 ( 2007).
[Crossref]
[PubMed]
H. Im, A. Lesuffleur, N. C. Lindquist, and S. H. Oh, “Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing,” Anal. Chem. 81(8), 2854–2859 ( 2009).
[Crossref]
[PubMed]
A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced Plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 ( 2007).
[Crossref]
A. Bilenca, J. Cao, M. Colice, A. Ozcan, B. Bouma, L. Raftery, and G. Tearney, “Fluorescence interferometry: principles and applications in biology,” Ann. N. Y. Acad. Sci. 1130(1), 68–77 ( 2008).
[Crossref]
[PubMed]
E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 ( 2008).
[Crossref]
[PubMed]
G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 ( 2008).
[Crossref]
K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface Plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Optim. Lett. 31(10), 1528 ( 2006).
[Crossref]
M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 ( 2004).
[Crossref]
[PubMed]
F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dommguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 ( 2003).
[Crossref]
F. Prieto, B. Sepulveda, A. Calle, and A LloberaC Dominguez, A Abad, A Montoya, and L. M Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 ( 2003).
[Crossref]
A. Bilenca, J. Cao, M. Colice, A. Ozcan, B. Bouma, L. Raftery, and G. Tearney, “Fluorescence interferometry: principles and applications in biology,” Ann. N. Y. Acad. Sci. 1130(1), 68–77 ( 2008).
[Crossref]
[PubMed]
P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. B 23(7), 1608 ( 2006).
[Crossref]
M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 ( 2008).
[Crossref]
[PubMed]
M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 ( 2006).
[Crossref]
[PubMed]
E. F. Schipper, A. M. Brugman, L. M. Lechuga, R. P. H. Kooyman, J. Greve, and C. Dominguez, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B Chem. 40(2-3), 147–153 ( 1997).
[Crossref]
H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 ( 2005).
[Crossref]
[PubMed]
J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 ( 2008).
[Crossref]
[PubMed]
F. Prieto, B. Sepulveda, A. Calle, and A LloberaC Dominguez, A Abad, A Montoya, and L. M Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 ( 2003).
[Crossref]
F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dommguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 ( 2003).
[Crossref]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 ( 2008).
[Crossref]
[PubMed]
J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 ( 2008).
[Crossref]
[PubMed]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
A. De Leebeeck, L. K. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 ( 2007).
[Crossref]
[PubMed]
M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 ( 2006).
[Crossref]
[PubMed]
D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 ( 2007).
[Crossref]
[PubMed]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 ( 1997).
[Crossref]
A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 ( 2006).
[Crossref]
A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 ( 2006).
[Crossref]
M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 ( 2008).
[Crossref]
[PubMed]
M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 ( 2006).
[Crossref]
[PubMed]
M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral Self-Interference Fluorescence Microscopy for Subcellular Imaging,” IEEE J. Sel. Top. Quantum Electron. 14(1), 217–225 ( 2008).
[Crossref]
L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 ( 2006).
[Crossref]
[PubMed]
M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 ( 2004).
[Crossref]
[PubMed]
A. Bilenca, J. Cao, M. Colice, A. Ozcan, B. Bouma, L. Raftery, and G. Tearney, “Fluorescence interferometry: principles and applications in biology,” Ann. N. Y. Acad. Sci. 1130(1), 68–77 ( 2008).
[Crossref]
[PubMed]
V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon interferometry: measuring group velocity of surface plasmons,” Optim. Lett. 32(10), 1235 ( 2007).
[Crossref]
K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface Plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Optim. Lett. 31(10), 1528 ( 2006).
[Crossref]
M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 ( 2008).
[Crossref]
[PubMed]
M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral Self-Interference Fluorescence Microscopy for Subcellular Imaging,” IEEE J. Sel. Top. Quantum Electron. 14(1), 217–225 ( 2008).
[Crossref]
E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 ( 2008).
[Crossref]
[PubMed]
L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 ( 2006).
[Crossref]
[PubMed]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 ( 2008).
[Crossref]
[PubMed]
H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 ( 2005).
[Crossref]
[PubMed]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 ( 2009).
[Crossref]
V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon interferometry: measuring group velocity of surface plasmons,” Optim. Lett. 32(10), 1235 ( 2007).
[Crossref]
X. Wu, J. Zhang, J. Chen, C. Zhao, and Q. Gong, “Refractive index sensor based on surface-plasmon interference,” Optim. Lett. 34(3), 392 ( 2009).
[Crossref]
M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral Self-Interference Fluorescence Microscopy for Subcellular Imaging,” IEEE J. Sel. Top. Quantum Electron. 14(1), 217–225 ( 2008).
[Crossref]
J. Ji, J. C. Yang, and D. N. Larson, “Nanohole arrays of mixed designs and microwriting for simultaneous and multiple protein binding studies,” Biosens. Bioelectron. 24(9), 2847–2852 ( 2009).
[Crossref]
[PubMed]
J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 ( 2008).
[Crossref]
[PubMed]
X. Wu, J. Zhang, J. Chen, C. Zhao, and Q. Gong, “Refractive index sensor based on surface-plasmon interference,” Optim. Lett. 34(3), 392 ( 2009).
[Crossref]
X. Wu, J. Zhang, J. Chen, C. Zhao, and Q. Gong, “Refractive index sensor based on surface-plasmon interference,” Optim. Lett. 34(3), 392 ( 2009).
[Crossref]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 ( 2008).
[Crossref]
[PubMed]
M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 ( 2004).
[Crossref]
[PubMed]
A. De Leebeeck, L. K. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 ( 2007).
[Crossref]
[PubMed]
J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 ( 2008).
[Crossref]
[PubMed]
J. Ji, J. G. O’Connell, D. J. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 ( 2008).
[Crossref]
[PubMed]
H. Im, A. Lesuffleur, N. C. Lindquist, and S. H. Oh, “Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing,” Anal. Chem. 81(8), 2854–2859 ( 2009).
[Crossref]
[PubMed]
A. Bilenca, J. Cao, M. Colice, A. Ozcan, B. Bouma, L. Raftery, and G. Tearney, “Fluorescence interferometry: principles and applications in biology,” Ann. N. Y. Acad. Sci. 1130(1), 68–77 ( 2008).
[Crossref]
[PubMed]
A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced Plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 ( 2007).
[Crossref]
H. W. Kihm, G. K. Lee, D. S. Kim, J. H. Kang, and P. Q. Han, “Control of surface Plasmon generation efficiency by silt-width tuning,” Appl. Phys. Lett. 92(5), 051115 ( 2008).
[Crossref]
A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 ( 2006).
[Crossref]
J. Ji, J. C. Yang, and D. N. Larson, “Nanohole arrays of mixed designs and microwriting for simultaneous and multiple protein binding studies,” Biosens. Bioelectron. 24(9), 2847–2852 ( 2009).
[Crossref]
[PubMed]
J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 ( 2008).
[Crossref]
[PubMed]
M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 ( 2008).
[Crossref]
[PubMed]
M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral Self-Interference Fluorescence Microscopy for Subcellular Imaging,” IEEE J. Sel. Top. Quantum Electron. 14(1), 217–225 ( 2008).
[Crossref]
G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 ( 2008).
[Crossref]
P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. B 23(7), 1608 ( 2006).
[Crossref]
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 ( 2004).
[Crossref]
[PubMed]
J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 ( 2008).
[Crossref]
[PubMed]
M. H. Lee, H. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 ( 2009).
[Crossref]
[PubMed]
F. Prieto, B. Sepulveda, A. Calle, and A LloberaC Dominguez, A Abad, A Montoya, and L. M Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 ( 2003).
[Crossref]
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 ( 2008).
[Crossref]
[PubMed]
J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 ( 2007).
[Crossref]
[PubMed]
P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 ( 2006).
[Crossref]
K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface Plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Optim. Lett. 31(10), 1528 ( 2006).
[Crossref]
V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon interferometry: measuring group velocity of surface plasmons,” Optim. Lett. 32(10), 1235 ( 2007).
[Crossref]
X. Wu, J. Zhang, J. Chen, C. Zhao, and Q. Gong, “Refractive index sensor based on surface-plasmon interference,” Optim. Lett. 34(3), 392 ( 2009).
[Crossref]
Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metal grating structures,” Phys. Rev. Lett. 100(25), 256803 ( 2008).
[Crossref]
[PubMed]
Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 ( 2009).
[Crossref]
[PubMed]
D. Braun and P. Fromherz, “Fluorescence interferometry of neuronal cell adhesion on microstructured silicon,” Phys. Rev. Lett. 81(23), 5241–5244 ( 1998).
[Crossref]
H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 ( 2005).
[Crossref]
[PubMed]
L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 ( 2006).
[Crossref]
[PubMed]
M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 ( 2006).
[Crossref]
[PubMed]
E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 ( 2008).
[Crossref]
[PubMed]
G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 ( 2009).
[Crossref]
[PubMed]
J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 ( 2009).
[Crossref]
F. J. García de Abajo and F. J Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 ( 2007).
[Crossref]
D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 ( 2007).
[Crossref]
[PubMed]
F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dommguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 ( 2003).
[Crossref]
E. F. Schipper, A. M. Brugman, L. M. Lechuga, R. P. H. Kooyman, J. Greve, and C. Dominguez, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B Chem. 40(2-3), 147–153 ( 1997).
[Crossref]
F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 ( 1997).
[Crossref]
E. D. Palik, Handbook of Optical Constants of Solids (Aacademic, Orlando, LF, 1985), Vol. 1.
P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, A microscopic view of the electromagnetic properties of sub-λ metallic surfaces, Surf. Sci. Rep. (2009).