Abstract

In this paper, the spectral behavior of two terahertz (THz) quantum cascade lasers (QCLs) operating both pulsed and cw is characterized using a heterodyne technique. Both lasers emitting around 2.5 THz are combined onto a whisker contact Schottky diode mixer mounted in a corner cube reflector. The resulting difference frequency beatnote is recorded in both the time and frequency domain. From the frequency domain data, we measure the effective laser linewidth and the tuning rates as a function of both temperature and injection current and show that the current tuning behavior cannot be explained by temperature tuning mechanisms alone. From the time domain data, we characterize the intra-pulse frequency tuning behavior, which limits the effective linewidth to approximately 5 MHz.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz sideband-tuned quantum cascade laser radiation

Andriy A. Danylov, Jerry Waldman, Thomas M. Goyette, Andrew J. Gatesman, Robert H. Giles, Jin Li, William D. Goodhue, Kurt J. Linden, and William E. Nixon
Opt. Express 16(8) 5171-5180 (2008)

Widely tunable quantum cascade laser-based terahertz source

Andriy A. Danylov, Alexander R. Light, Jerry Waldman, Neal Erickson, and Xifeng Qian
Appl. Opt. 53(20) 4475-4480 (2014)

Linewidth and tuning characteristics of terahertz quantum cascade lasers

A. Barkan, F. K. Tittel, D. M. Mittleman, R. Dengler, P. H. Siegel, G. Scalari, L. Ajili, J. Faist, H. E. Beere, E. H. Linfield, A. G. Davies, and D. A. Ritchie
Opt. Lett. 29(6) 575-577 (2004)

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [Crossref] [PubMed]
  2. B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
    [Crossref]
  3. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
    [Crossref]
  4. S. Kumar, Q. Hu, and J.L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
    [Crossref]
  5. J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
    [Crossref]
  6. H. Hübers, S. Pavlov, A. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. Beere, D. Ritchie, and E. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express 13, 5890–5896 (2005).
    [Crossref] [PubMed]
  7. A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, J. Li, W. D. Goodhue, K. J. Linden, and W. E. Nixon, “Terahertz sideband-tuned quantum cascade laser radiation,” Opt. Express 16, 5171–5180 (2008).
    [Crossref] [PubMed]
  8. S. Barbieri, J. Alton, C. Baker, T. Lo, H. Beere, and D. Ritchie, “Imaging with THz quantum cascade lasers using a Schottky diode mixer,” Opt. Express 13, 6497–6503 (2005).
    [Crossref] [PubMed]
  9. M. Lee, M. C. Wanke, M. Lerttamrab, E. W. Young, A. D. Grine, J. L. Reno, P. H. Siegel, and R. J. Dengler, “Heterodyne Mixing of Terahertz Quantum Cascade Lasers Using a Planar Schottky Diode,” IEEE J. Sel. Top. Quantum Electron. 14, 370 (2008).
    [Crossref]
  10. N. Beverini, G. Carelli, A. De Michele, A. Moretti, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Frequency Characterization of a Terahertz Quantum-Cascade Laser,” IEEE Trans. Instrum. Meas. 56, 262–265(2007).
    [Crossref]
  11. A. L. Betz, R. T. Boreiko, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Frequency and phase-lock control of a 3 THz quantum cascade laser,” Opt. Lett. 30, 1837–1839 (2005).
    [Crossref] [PubMed]
  12. S. Barbieri, J. Alton, H. E. Beere, E. H. Linfield, D. A. Ritchie, S. Withington, G. Scalari, L. Ajili, and J. Faist, “Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode,” Opt. Lett. 29, 1632–1634 (2004).
    [Crossref] [PubMed]
  13. L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-Performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett. 87, 181101 (2004).
    [Crossref]
  14. L. M. Matarrese and K. M. Evenson, “Improved coupling to a infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
    [Crossref]
  15. H. Kräutle, E. Sauter, and G.V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys. 17, 477–483 (1977).
    [Crossref]
  16. S. A. Lourenço, I. F. L. Dias, J. L. Duarte, E. Laureto, L. C. Poças, D. O. Toginho Filho, and J. R. Leite, “Thermal Expansion Contribution to the Temperature Dependence of Excitonic Transitions in GaAs and AlGaAs,” Braz. J. Phys. 34, 517 (2004).
    [Crossref]
  17. M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers,” Appl. Phys. Lett. 92, 101116 (2008).
    [Crossref]
  18. C. A. Evans, V. D. Jovanovic, D. Indjin, Z. Ikonic, and P. Harrison, “Investigation of thermal effects in quantum-cascade lasers,” IEEE J. Quantum Electron. 42, 859 (2006).
    [Crossref]

2009 (1)

S. Kumar, Q. Hu, and J.L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

2008 (3)

M. Lee, M. C. Wanke, M. Lerttamrab, E. W. Young, A. D. Grine, J. L. Reno, P. H. Siegel, and R. J. Dengler, “Heterodyne Mixing of Terahertz Quantum Cascade Lasers Using a Planar Schottky Diode,” IEEE J. Sel. Top. Quantum Electron. 14, 370 (2008).
[Crossref]

M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers,” Appl. Phys. Lett. 92, 101116 (2008).
[Crossref]

A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, J. Li, W. D. Goodhue, K. J. Linden, and W. E. Nixon, “Terahertz sideband-tuned quantum cascade laser radiation,” Opt. Express 16, 5171–5180 (2008).
[Crossref] [PubMed]

2007 (2)

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

N. Beverini, G. Carelli, A. De Michele, A. Moretti, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Frequency Characterization of a Terahertz Quantum-Cascade Laser,” IEEE Trans. Instrum. Meas. 56, 262–265(2007).
[Crossref]

2006 (2)

B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[Crossref]

C. A. Evans, V. D. Jovanovic, D. Indjin, Z. Ikonic, and P. Harrison, “Investigation of thermal effects in quantum-cascade lasers,” IEEE J. Quantum Electron. 42, 859 (2006).
[Crossref]

2005 (4)

2004 (3)

L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-Performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett. 87, 181101 (2004).
[Crossref]

S. A. Lourenço, I. F. L. Dias, J. L. Duarte, E. Laureto, L. C. Poças, D. O. Toginho Filho, and J. R. Leite, “Thermal Expansion Contribution to the Temperature Dependence of Excitonic Transitions in GaAs and AlGaAs,” Braz. J. Phys. 34, 517 (2004).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, E. H. Linfield, D. A. Ritchie, S. Withington, G. Scalari, L. Ajili, and J. Faist, “Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode,” Opt. Lett. 29, 1632–1634 (2004).
[Crossref] [PubMed]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

1977 (1)

H. Kräutle, E. Sauter, and G.V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys. 17, 477–483 (1977).
[Crossref]

1970 (1)

L. M. Matarrese and K. M. Evenson, “Improved coupling to a infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
[Crossref]

Adam, A. J. L.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Ajili, L.

Alton, J.

Baker, C.

Barbieri, S.

Baryshev, A.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Baselmans, J. J. A.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Beere, H.

Beere, H. E.

N. Beverini, G. Carelli, A. De Michele, A. Moretti, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Frequency Characterization of a Terahertz Quantum-Cascade Laser,” IEEE Trans. Instrum. Meas. 56, 262–265(2007).
[Crossref]

L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-Performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett. 87, 181101 (2004).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, E. H. Linfield, D. A. Ritchie, S. Withington, G. Scalari, L. Ajili, and J. Faist, “Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode,” Opt. Lett. 29, 1632–1634 (2004).
[Crossref] [PubMed]

Beere, H.E.

R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-Performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett. 87, 181101 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Betz, A. L.

Beverini, N.

N. Beverini, G. Carelli, A. De Michele, A. Moretti, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Frequency Characterization of a Terahertz Quantum-Cascade Laser,” IEEE Trans. Instrum. Meas. 56, 262–265(2007).
[Crossref]

Boreiko, R. T.

Carelli, G.

N. Beverini, G. Carelli, A. De Michele, A. Moretti, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Frequency Characterization of a Terahertz Quantum-Cascade Laser,” IEEE Trans. Instrum. Meas. 56, 262–265(2007).
[Crossref]

Danylov, A. A.

Davies, A.G.

R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

De Michele, A.

N. Beverini, G. Carelli, A. De Michele, A. Moretti, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Frequency Characterization of a Terahertz Quantum-Cascade Laser,” IEEE Trans. Instrum. Meas. 56, 262–265(2007).
[Crossref]

Dengler, R. J.

M. Lee, M. C. Wanke, M. Lerttamrab, E. W. Young, A. D. Grine, J. L. Reno, P. H. Siegel, and R. J. Dengler, “Heterodyne Mixing of Terahertz Quantum Cascade Lasers Using a Planar Schottky Diode,” IEEE J. Sel. Top. Quantum Electron. 14, 370 (2008).
[Crossref]

Dias, I. F. L.

S. A. Lourenço, I. F. L. Dias, J. L. Duarte, E. Laureto, L. C. Poças, D. O. Toginho Filho, and J. R. Leite, “Thermal Expansion Contribution to the Temperature Dependence of Excitonic Transitions in GaAs and AlGaAs,” Braz. J. Phys. 34, 517 (2004).
[Crossref]

Duarte, J. L.

S. A. Lourenço, I. F. L. Dias, J. L. Duarte, E. Laureto, L. C. Poças, D. O. Toginho Filho, and J. R. Leite, “Thermal Expansion Contribution to the Temperature Dependence of Excitonic Transitions in GaAs and AlGaAs,” Braz. J. Phys. 34, 517 (2004).
[Crossref]

Evans, C. A.

C. A. Evans, V. D. Jovanovic, D. Indjin, Z. Ikonic, and P. Harrison, “Investigation of thermal effects in quantum-cascade lasers,” IEEE J. Quantum Electron. 42, 859 (2006).
[Crossref]

Evenson, K. M.

L. M. Matarrese and K. M. Evenson, “Improved coupling to a infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
[Crossref]

Faist, J.

Fischer, M.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Gao, J. R.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Gatesman, A. J.

Giles, R. H.

Goodhue, W. D.

Goyette, T. M.

Grine, A. D.

M. Lee, M. C. Wanke, M. Lerttamrab, E. W. Young, A. D. Grine, J. L. Reno, P. H. Siegel, and R. J. Dengler, “Heterodyne Mixing of Terahertz Quantum Cascade Lasers Using a Planar Schottky Diode,” IEEE J. Sel. Top. Quantum Electron. 14, 370 (2008).
[Crossref]

Hajenius, M.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Harrison, P.

C. A. Evans, V. D. Jovanovic, D. Indjin, Z. Ikonic, and P. Harrison, “Investigation of thermal effects in quantum-cascade lasers,” IEEE J. Quantum Electron. 42, 859 (2006).
[Crossref]

Hovenier, J. N.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Hoyler, N.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Hu, Q.

S. Kumar, Q. Hu, and J.L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[Crossref]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

A. L. Betz, R. T. Boreiko, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Frequency and phase-lock control of a 3 THz quantum cascade laser,” Opt. Lett. 30, 1837–1839 (2005).
[Crossref] [PubMed]

Hübers, H.

Ikonic, Z.

C. A. Evans, V. D. Jovanovic, D. Indjin, Z. Ikonic, and P. Harrison, “Investigation of thermal effects in quantum-cascade lasers,” IEEE J. Quantum Electron. 42, 859 (2006).
[Crossref]

Indjin, D.

C. A. Evans, V. D. Jovanovic, D. Indjin, Z. Ikonic, and P. Harrison, “Investigation of thermal effects in quantum-cascade lasers,” IEEE J. Quantum Electron. 42, 859 (2006).
[Crossref]

Iotti, R.C.

R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Jovanovic, V. D.

C. A. Evans, V. D. Jovanovic, D. Indjin, Z. Ikonic, and P. Harrison, “Investigation of thermal effects in quantum-cascade lasers,” IEEE J. Quantum Electron. 42, 859 (2006).
[Crossref]

Klaassen, T. O.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Klapwijk, T. M.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Kohler, R.

L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-Performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett. 87, 181101 (2004).
[Crossref]

Köhler, R.

H. Hübers, S. Pavlov, A. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. Beere, D. Ritchie, and E. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express 13, 5890–5896 (2005).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Kräutle, H.

H. Kräutle, E. Sauter, and G.V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys. 17, 477–483 (1977).
[Crossref]

Kumar, S.

S. Kumar, Q. Hu, and J.L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[Crossref]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

A. L. Betz, R. T. Boreiko, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Frequency and phase-lock control of a 3 THz quantum cascade laser,” Opt. Lett. 30, 1837–1839 (2005).
[Crossref] [PubMed]

Laureto, E.

S. A. Lourenço, I. F. L. Dias, J. L. Duarte, E. Laureto, L. C. Poças, D. O. Toginho Filho, and J. R. Leite, “Thermal Expansion Contribution to the Temperature Dependence of Excitonic Transitions in GaAs and AlGaAs,” Braz. J. Phys. 34, 517 (2004).
[Crossref]

Lee, M.

M. Lee, M. C. Wanke, M. Lerttamrab, E. W. Young, A. D. Grine, J. L. Reno, P. H. Siegel, and R. J. Dengler, “Heterodyne Mixing of Terahertz Quantum Cascade Lasers Using a Planar Schottky Diode,” IEEE J. Sel. Top. Quantum Electron. 14, 370 (2008).
[Crossref]

Leite, J. R.

S. A. Lourenço, I. F. L. Dias, J. L. Duarte, E. Laureto, L. C. Poças, D. O. Toginho Filho, and J. R. Leite, “Thermal Expansion Contribution to the Temperature Dependence of Excitonic Transitions in GaAs and AlGaAs,” Braz. J. Phys. 34, 517 (2004).
[Crossref]

Lerttamrab, M.

M. Lee, M. C. Wanke, M. Lerttamrab, E. W. Young, A. D. Grine, J. L. Reno, P. H. Siegel, and R. J. Dengler, “Heterodyne Mixing of Terahertz Quantum Cascade Lasers Using a Planar Schottky Diode,” IEEE J. Sel. Top. Quantum Electron. 14, 370 (2008).
[Crossref]

Li, J.

Linden, K. J.

Linfield, E.

Linfield, E. H.

S. Barbieri, J. Alton, H. E. Beere, E. H. Linfield, D. A. Ritchie, S. Withington, G. Scalari, L. Ajili, and J. Faist, “Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode,” Opt. Lett. 29, 1632–1634 (2004).
[Crossref] [PubMed]

L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-Performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett. 87, 181101 (2004).
[Crossref]

Linfield, E.H.

R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Lo, T.

Lourenço, S. A.

S. A. Lourenço, I. F. L. Dias, J. L. Duarte, E. Laureto, L. C. Poças, D. O. Toginho Filho, and J. R. Leite, “Thermal Expansion Contribution to the Temperature Dependence of Excitonic Transitions in GaAs and AlGaAs,” Braz. J. Phys. 34, 517 (2004).
[Crossref]

Mahler, L.

N. Beverini, G. Carelli, A. De Michele, A. Moretti, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Frequency Characterization of a Terahertz Quantum-Cascade Laser,” IEEE Trans. Instrum. Meas. 56, 262–265(2007).
[Crossref]

H. Hübers, S. Pavlov, A. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. Beere, D. Ritchie, and E. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express 13, 5890–5896 (2005).
[Crossref] [PubMed]

L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-Performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett. 87, 181101 (2004).
[Crossref]

Matarrese, L. M.

L. M. Matarrese and K. M. Evenson, “Improved coupling to a infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
[Crossref]

Moretti, A.

N. Beverini, G. Carelli, A. De Michele, A. Moretti, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Frequency Characterization of a Terahertz Quantum-Cascade Laser,” IEEE Trans. Instrum. Meas. 56, 262–265(2007).
[Crossref]

Nixon, W. E.

Pavlov, S.

Poças, L. C.

S. A. Lourenço, I. F. L. Dias, J. L. Duarte, E. Laureto, L. C. Poças, D. O. Toginho Filho, and J. R. Leite, “Thermal Expansion Contribution to the Temperature Dependence of Excitonic Transitions in GaAs and AlGaAs,” Braz. J. Phys. 34, 517 (2004).
[Crossref]

Reno, J. L.

M. Lee, M. C. Wanke, M. Lerttamrab, E. W. Young, A. D. Grine, J. L. Reno, P. H. Siegel, and R. J. Dengler, “Heterodyne Mixing of Terahertz Quantum Cascade Lasers Using a Planar Schottky Diode,” IEEE J. Sel. Top. Quantum Electron. 14, 370 (2008).
[Crossref]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

A. L. Betz, R. T. Boreiko, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Frequency and phase-lock control of a 3 THz quantum cascade laser,” Opt. Lett. 30, 1837–1839 (2005).
[Crossref] [PubMed]

Reno, J.L.

S. Kumar, Q. Hu, and J.L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[Crossref]

Ritchie, D.

Ritchie, D. A.

N. Beverini, G. Carelli, A. De Michele, A. Moretti, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Frequency Characterization of a Terahertz Quantum-Cascade Laser,” IEEE Trans. Instrum. Meas. 56, 262–265(2007).
[Crossref]

L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-Performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett. 87, 181101 (2004).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, E. H. Linfield, D. A. Ritchie, S. Withington, G. Scalari, L. Ajili, and J. Faist, “Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode,” Opt. Lett. 29, 1632–1634 (2004).
[Crossref] [PubMed]

Ritchie, D.A.

R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Sauter, E.

H. Kräutle, E. Sauter, and G.V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys. 17, 477–483 (1977).
[Crossref]

Scalari, G.

Scamarcio, G.

M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers,” Appl. Phys. Lett. 92, 101116 (2008).
[Crossref]

Schultz, G.V.

H. Kräutle, E. Sauter, and G.V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys. 17, 477–483 (1977).
[Crossref]

Semenov, A.

Siegel, P. H.

M. Lee, M. C. Wanke, M. Lerttamrab, E. W. Young, A. D. Grine, J. L. Reno, P. H. Siegel, and R. J. Dengler, “Heterodyne Mixing of Terahertz Quantum Cascade Lasers Using a Planar Schottky Diode,” IEEE J. Sel. Top. Quantum Electron. 14, 370 (2008).
[Crossref]

Spagnolo, V.

M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers,” Appl. Phys. Lett. 92, 101116 (2008).
[Crossref]

Terazzi, R.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Toginho Filho, D. O.

S. A. Lourenço, I. F. L. Dias, J. L. Duarte, E. Laureto, L. C. Poças, D. O. Toginho Filho, and J. R. Leite, “Thermal Expansion Contribution to the Temperature Dependence of Excitonic Transitions in GaAs and AlGaAs,” Braz. J. Phys. 34, 517 (2004).
[Crossref]

Tredicucci, A.

N. Beverini, G. Carelli, A. De Michele, A. Moretti, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Frequency Characterization of a Terahertz Quantum-Cascade Laser,” IEEE Trans. Instrum. Meas. 56, 262–265(2007).
[Crossref]

H. Hübers, S. Pavlov, A. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. Beere, D. Ritchie, and E. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express 13, 5890–5896 (2005).
[Crossref] [PubMed]

L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-Performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett. 87, 181101 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Vitiello, M. S.

M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers,” Appl. Phys. Lett. 92, 101116 (2008).
[Crossref]

Waldman, J.

Walther, C.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Wanke, M. C.

M. Lee, M. C. Wanke, M. Lerttamrab, E. W. Young, A. D. Grine, J. L. Reno, P. H. Siegel, and R. J. Dengler, “Heterodyne Mixing of Terahertz Quantum Cascade Lasers Using a Planar Schottky Diode,” IEEE J. Sel. Top. Quantum Electron. 14, 370 (2008).
[Crossref]

Williams, B. S.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

A. L. Betz, R. T. Boreiko, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Frequency and phase-lock control of a 3 THz quantum cascade laser,” Opt. Lett. 30, 1837–1839 (2005).
[Crossref] [PubMed]

Williams, B.S.

B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[Crossref]

Withington, S.

Yang, Z. Q.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Young, E. W.

M. Lee, M. C. Wanke, M. Lerttamrab, E. W. Young, A. D. Grine, J. L. Reno, P. H. Siegel, and R. J. Dengler, “Heterodyne Mixing of Terahertz Quantum Cascade Lasers Using a Planar Schottky Diode,” IEEE J. Sel. Top. Quantum Electron. 14, 370 (2008).
[Crossref]

Appl. Phys. Lett. (6)

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

S. Kumar, Q. Hu, and J.L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-Performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett. 87, 181101 (2004).
[Crossref]

L. M. Matarrese and K. M. Evenson, “Improved coupling to a infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
[Crossref]

M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Time-resolved measurement of the local lattice temperature in terahertz quantum cascade lasers,” Appl. Phys. Lett. 92, 101116 (2008).
[Crossref]

Braz. J. Phys. (1)

S. A. Lourenço, I. F. L. Dias, J. L. Duarte, E. Laureto, L. C. Poças, D. O. Toginho Filho, and J. R. Leite, “Thermal Expansion Contribution to the Temperature Dependence of Excitonic Transitions in GaAs and AlGaAs,” Braz. J. Phys. 34, 517 (2004).
[Crossref]

Electron. Lett. (1)

B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

C. A. Evans, V. D. Jovanovic, D. Indjin, Z. Ikonic, and P. Harrison, “Investigation of thermal effects in quantum-cascade lasers,” IEEE J. Quantum Electron. 42, 859 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Lee, M. C. Wanke, M. Lerttamrab, E. W. Young, A. D. Grine, J. L. Reno, P. H. Siegel, and R. J. Dengler, “Heterodyne Mixing of Terahertz Quantum Cascade Lasers Using a Planar Schottky Diode,” IEEE J. Sel. Top. Quantum Electron. 14, 370 (2008).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

N. Beverini, G. Carelli, A. De Michele, A. Moretti, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Frequency Characterization of a Terahertz Quantum-Cascade Laser,” IEEE Trans. Instrum. Meas. 56, 262–265(2007).
[Crossref]

Infrared Phys. (1)

H. Kräutle, E. Sauter, and G.V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys. 17, 477–483 (1977).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Optical layout showing to scale the local oscillator (LO) and signal (Sig) quantum cascade lasers (QCL) mounted in their cryostats and directed with off-axis parabolic (OAP) reflectors, plane reflectors (M), and a beam combiner (BC) onto a corner cube mixer (CCM).
Fig. 2.
Fig. 2. Selected heterodyne signals between lasers A3264L1 (cw, T=17 to 19K) and A3264M (pulsed 3µs at 100kHz, Peak Current=763mA, T=11K) for different drive currents applied to A3264L1. The triangles show the Gaussian fit center frequency of each spectrum plotted versus the drive current on the right axis. The associated linear fit indicates a laser tuning rate of 3755±65 MHz/A.
Fig. 3.
Fig. 3. Heterodyne signals between lasers A3264L1 (cw, T=15K, Current=966mA) and A3264M (pulsed 3µs at 100kHz, T=9 to 17K) for different peak drive currents applied to A3264M. The triangles show the Gaussian fit center frequency of each spectrum plotted versus the drive current on the right axis. The associated linear fit indicates a laser tuning rate of 4968±52 MHz/A.
Fig. 4.
Fig. 4. Heterodyne signals between lasers A3264L1 (cw, Current=1.180A) and A3264M (pulsed 3µs at 100kHz, Peak Current=760mA, T=6.0K) for different temperatures of A3264L1. The triangles and associated quadratic fit show the Gaussian fit center frequency of each spectrum plotted versus the laser temperature on the right axis.
Fig. 5.
Fig. 5. Heterodyne signals between lasers A3264L1 (cw, Current=1.180A, T=25.0K) and A3264M (pulsed 3µs at 100kHz, Peak Current=760mA) for different temperatures of A3264M. The triangles and associated quadratic fit show the Gaussian fit center frequency of each spectrum plotted versus the laser temperature on the right axis.
Fig. 6.
Fig. 6. Heterodyne signal between lasers A3264L1 (cw) and A3264M (pulsed) in the time (top) and frequency (bottom) domain. The pulsed laser turns on for 3µs every 10µs, as shown by the “Gate” trace. The FFT of 4 separate 80ns time segments are shown in the lower graph.
Fig. 7.
Fig. 7. Location of the peak frequency component versus time within a 3 µs long pulse for increasing drive current to the pulsed laser.
Fig. 8.
Fig. 8. Location of the peak frequency component versus time within a 919mA high (peak) 300µs and 30µs (inset) long pulse
Fig. 9.
Fig. 9. Heterodyne signal between lasers A3264M (pulsed) and A3264L1 (cw) along with a Gaussian fit shown in red.

Metrics