Abstract

A linear waveguide in an annular photonic crystal composed of a square array of annular dielectric rods in air is demonstrated to guide transverse electric and transverse magnetic modes simultaneously. Overlapping of the guided bands in the full band gap of the photonic crystal is shown to be achieved through an appropriate set of geometric parameters. Results of Finite-Difference Time-Domain simulations to demonstrate polarization-independent waveguiding with low loss and wavelength-order confinement are presented. Transmission through a 90° bend is also demonstrated.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Annular photonic crystals

Hamza Kurt and D. S. Citrin
Opt. Express 13(25) 10316-10326 (2005)

Creation of large band gap with anisotropic annular photonic crystal slab structure

Peng Shi, Kun Huang, Xue-liang Kang, and Yong-ping Li
Opt. Express 18(5) 5221-5228 (2010)

References

  • View by:
  • |
  • |
  • |

  1. E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
    [Crossref] [PubMed]
  2. Y. Xu, X.-J. Chen, S. Lan, Q.-F. Dai, Q. Guo, and L.-J. Wu, “Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry,” Opt. Express 17(6), 4903–4912 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-6-4903 .
    [Crossref] [PubMed]
  3. A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58(8), 4809–4817 (1998).
    [Crossref]
  4. N. Susa, “Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes,” J. Appl. Phys. 91(6), 3501 (2002).
    [Crossref]
  5. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (2nd Ed., Princeton University Press, 2008), pp. 242–251.
  6. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-25-10316 .
    [Crossref] [PubMed]
  7. W. H. Press, S. A. Teukolsky, W. T. Wetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (3rd Ed., Cambridge University Press, 2007), pp. 502–507.
  8. K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [Crossref]
  9. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
    [Crossref] [PubMed]
  10. RSoft Design Group, http://www.rsoftdesign.com .
  11. J. P. Berenger, “Perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [Crossref]
  12. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-20-9444 .
    [Crossref] [PubMed]
  13. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref] [PubMed]
  14. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]

2009 (1)

2008 (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

2006 (1)

2005 (2)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-25-10316 .
[Crossref] [PubMed]

2003 (1)

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
[Crossref] [PubMed]

2002 (1)

N. Susa, “Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes,” J. Appl. Phys. 91(6), 3501 (2002).
[Crossref]

1998 (1)

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58(8), 4809–4817 (1998).
[Crossref]

1994 (1)

J. P. Berenger, “Perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[Crossref]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[Crossref] [PubMed]

1966 (1)

K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Berenger, J. P.

J. P. Berenger, “Perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[Crossref]

Borel, P. I.

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[Crossref] [PubMed]

Chen, X.-J.

Citrin, D. S.

Dai, Q.-F.

Fage-Pedersen, J.

Fan, S.

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58(8), 4809–4817 (1998).
[Crossref]

Frandsen, L. H.

Guo, Q.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[Crossref] [PubMed]

Joannopoulos, J. D.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
[Crossref] [PubMed]

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58(8), 4809–4817 (1998).
[Crossref]

Johnson, S. G.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
[Crossref] [PubMed]

Kurt, H.

Lan, S.

Lavrinenko, A. V.

Lidorikis, E.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
[Crossref] [PubMed]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Mekis, A.

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58(8), 4809–4817 (1998).
[Crossref]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Povinelli, M. L.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
[Crossref] [PubMed]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[Crossref] [PubMed]

Susa, N.

N. Susa, “Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes,” J. Appl. Phys. 91(6), 3501 (2002).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Wu, L.-J.

Xu, Y.

Yee, K. S.

K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

J. Appl. Phys. (1)

N. Susa, “Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes,” J. Appl. Phys. 91(6), 3501 (2002).
[Crossref]

J. Comput. Phys. (1)

J. P. Berenger, “Perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[Crossref]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58(8), 4809–4817 (1998).
[Crossref]

Phys. Rev. Lett. (2)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[Crossref] [PubMed]

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91(2), 023902 (2003).
[Crossref] [PubMed]

Other (3)

RSoft Design Group, http://www.rsoftdesign.com .

W. H. Press, S. A. Teukolsky, W. T. Wetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (3rd Ed., Cambridge University Press, 2007), pp. 502–507.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (2nd Ed., Princeton University Press, 2008), pp. 242–251.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Details of the 21x1 super cell employed in computations and (b) the band structure of the unit cell marked by the dashed box in (a).
Fig. 2
Fig. 2 Guided bands of the linear waveguide where it is (a) void (rwg = sa = sb = Δw = 0) and (b) defined by the optimized parameters (rwg = 0.391a, sa = 0.0806a, sb = 0.157a, Δw = 0.0571a). Overlapping even modes are denoted by circles.
Fig. 3
Fig. 3 Modal profiles of the guided TM and TE modes at ky = 0 within the linear WG.
Fig. 4
Fig. 4 Field distribution at the end of the FDTD simulation of the polarization-independent WG for (a) TM and (b) TE polarizations, where (c) and (d) indicate time-averaged power flow across the shaded regions denoted by Pin, Pout and Pref.
Fig. 5
Fig. 5 Transmission spectra of the polarization-independent linear waveguide. Arrows indicate the onset of effective wavelength-order confinement for each mode, while the grayed area indicates the wavelength range for polarization-independent waveguiding.
Fig. 6
Fig. 6 FDTD simulation for the transmission of (a) TM-polarized and (b) TE-polarized input through a 90° bend.

Metrics