Abstract

Nanosecond laser induced damage in RbTiOPO4 (RTP) an isomorphic material to the more widely known KTiOPO4 (KTP) is studied in crystals with varying properties. The ionic conductivity along the z-axes of the tested crystals ranged from 1.5 10−9 S/cm to 1.1 10−12 S/cm. Further, different growth sectors with different absorption in the range of hundreds of ppm/cm and differing zones in inhomogeneous crystals have been investigated. Despite these important differences in crystal quality, no significant difference could be observed in the laser damage resistance at 1064 nm. Thus growth induced defects only play a minor role in nanosecond laser induced damage in RTP. Transient, laser induced defects are discussed in analogy with KTP as possible laser damage precursors.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced damage investigation at 1064 nmin KTiOPO4 crystals and its analogy with RbTiOPO4

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht
Appl. Opt. 48(21) 4263-4269 (2009)

Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy

F. R. Wagner, A. Hildenbrand, J.Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht
Opt. Express 15(21) 13849-13857 (2007)

Nanosecond-laser-induced damage in potassium titanyl phosphate: pure 532 nm pumping and frequency conversion situations

Frank R. Wagner, Anne Hildenbrand, Jean-Yves Natoli, and Mireille Commandré
Appl. Opt. 50(22) 4509-4515 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
    [Crossref]
  2. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and Relative Nonlinear Optical Coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO-LiNbO3, and KTP Measured by Phase-Matched 2nd-Harmonic Generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
    [Crossref]
  3. M. Tseitlin, E. Mojaev, and M. Roth, “Growth of high resistivity RbTiOPO4 crystals,” J. Cryst. Growth 310(7-9), 1929–1933 (2008).
    [Crossref]
  4. S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
    [Crossref]
  5. B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
    [Crossref] [PubMed]
  6. J. Chen, A. J. Pearlman, A. Ling, J. Y. Fan, and A. L. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17(8), 6727–6740 (2009).
    [Crossref] [PubMed]
  7. M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical-Study of the Nonlinear-Optical Properties of KTiOPO4 - Effects Of Ti-O-Ti Bond Angles and Oxygen Electronegativity,” Chem. Mater. 5, 1257–1267 (1993).
    [Crossref]
  8. V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141(1-4), 472–476 (1998).
    [Crossref]
  9. Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “EPR and ENDOR study of an oxygen-vacancy-associated Ti3+ center in RbTiOPO4 crystals,” Physica B 400(1-2), 190–197 (2007).
    [Crossref]
  10. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
    [Crossref] [PubMed]
  11. F. Wagner, A. Hildenbrand, J. Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: Threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015 (2007).
    [Crossref]
  12. S. Favre, T. C. Sidler, and R. P. Salathe, “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser,” IEEE J. Quantum Electron. 39(6), 733–740 (2003).
    [Crossref]
  13. H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45, 766–769 (2006).
    [Crossref]
  14. F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849–13857 (2007).
    [Crossref] [PubMed]
  15. S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater. 54(1-2), 1–120 (2008).
    [Crossref]
  16. G. S. Settles, “Shadowgraph Techniques,” in Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, 2001), p. 143.
  17. A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” Proc. SPIE 3610, 44–51 (1999).
    [Crossref]
  18. M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1-2), 131–136 (2001).
    [Crossref]
  19. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
    [Crossref]
  20. L. Gallais and J. Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
    [Crossref] [PubMed]
  21. International Organization of, Standardization, “Determination of laser-damage threshold of optical surfaces Part 2: S-on-1 test,” (ISO 11254–2, 2001), p. 29.
  22. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
    [Crossref] [PubMed]
  23. J. Y. Natoli, B. Bertussi, and M. Commandré, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30(11), 1315–1317 (2005).
    [Crossref] [PubMed]
  24. H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
    [Crossref]
  25. R. A. Negres, N. P. Zaitseva, P. DeMange, and S. G. Demos, “Expedited laser damage profiling of KDxH(2-x)PO4 with respect to crystal growth parameters,” Opt. Lett. 31(21), 3110–3112 (2006).
    [Crossref] [PubMed]

2009 (3)

2008 (3)

S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater. 54(1-2), 1–120 (2008).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

M. Tseitlin, E. Mojaev, and M. Roth, “Growth of high resistivity RbTiOPO4 crystals,” J. Cryst. Growth 310(7-9), 1929–1933 (2008).
[Crossref]

2007 (4)

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “EPR and ENDOR study of an oxygen-vacancy-associated Ti3+ center in RbTiOPO4 crystals,” Physica B 400(1-2), 190–197 (2007).
[Crossref]

F. Wagner, A. Hildenbrand, J. Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: Threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015 (2007).
[Crossref]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849–13857 (2007).
[Crossref] [PubMed]

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

2006 (2)

R. A. Negres, N. P. Zaitseva, P. DeMange, and S. G. Demos, “Expedited laser damage profiling of KDxH(2-x)PO4 with respect to crystal growth parameters,” Opt. Lett. 31(21), 3110–3112 (2006).
[Crossref] [PubMed]

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45, 766–769 (2006).
[Crossref]

2005 (3)

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

J. Y. Natoli, B. Bertussi, and M. Commandré, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30(11), 1315–1317 (2005).
[Crossref] [PubMed]

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

2004 (1)

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

2003 (2)

S. Favre, T. C. Sidler, and R. P. Salathe, “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser,” IEEE J. Quantum Electron. 39(6), 733–740 (2003).
[Crossref]

L. Gallais and J. Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
[Crossref] [PubMed]

2001 (1)

M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1-2), 131–136 (2001).
[Crossref]

1999 (1)

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” Proc. SPIE 3610, 44–51 (1999).
[Crossref]

1998 (1)

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141(1-4), 472–476 (1998).
[Crossref]

1993 (1)

M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical-Study of the Nonlinear-Optical Properties of KTiOPO4 - Effects Of Ti-O-Ti Bond Angles and Oxygen Electronegativity,” Chem. Mater. 5, 1257–1267 (1993).
[Crossref]

1990 (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and Relative Nonlinear Optical Coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO-LiNbO3, and KTP Measured by Phase-Matched 2nd-Harmonic Generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

Akhouayri, H.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
[Crossref] [PubMed]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Albrecht, H.

Alexandrovski, A.

M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1-2), 131–136 (2001).
[Crossref]

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” Proc. SPIE 3610, 44–51 (1999).
[Crossref]

Angert, N.

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “EPR and ENDOR study of an oxygen-vacancy-associated Ti3+ center in RbTiOPO4 crystals,” Physica B 400(1-2), 190–197 (2007).
[Crossref]

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1-2), 131–136 (2001).
[Crossref]

Bercegol, H.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Bertussi, B.

Bouillet, S.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and Relative Nonlinear Optical Coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO-LiNbO3, and KTP Measured by Phase-Matched 2nd-Harmonic Generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

Chen, J.

Commandré, M.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
[Crossref] [PubMed]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

F. Wagner, A. Hildenbrand, J. Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: Threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015 (2007).
[Crossref]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849–13857 (2007).
[Crossref] [PubMed]

J. Y. Natoli, B. Bertussi, and M. Commandré, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30(11), 1315–1317 (2005).
[Crossref] [PubMed]

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Courchinoux, R.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

DeMange, P.

Demos, S. G.

Denks, V.

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141(1-4), 472–476 (1998).
[Crossref]

Donval, T.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Dudelzak, A.

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141(1-4), 472–476 (1998).
[Crossref]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and Relative Nonlinear Optical Coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO-LiNbO3, and KTP Measured by Phase-Matched 2nd-Harmonic Generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

Fan, J. Y.

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and Relative Nonlinear Optical Coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO-LiNbO3, and KTP Measured by Phase-Matched 2nd-Harmonic Generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

Favre, S.

S. Favre, T. C. Sidler, and R. P. Salathe, “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser,” IEEE J. Quantum Electron. 39(6), 733–740 (2003).
[Crossref]

Fejer, M. M.

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” Proc. SPIE 3610, 44–51 (1999).
[Crossref]

Foulon, G.

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” Proc. SPIE 3610, 44–51 (1999).
[Crossref]

Fujita, H.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45, 766–769 (2006).
[Crossref]

Gallais, L.

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

L. Gallais and J. Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
[Crossref] [PubMed]

Glebov, L.

Grèzes-Besset, C.

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Halliburton, L. E.

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “EPR and ENDOR study of an oxygen-vacancy-associated Ti3+ center in RbTiOPO4 crystals,” Physica B 400(1-2), 190–197 (2007).
[Crossref]

Harrison, J. F.

M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical-Study of the Nonlinear-Optical Properties of KTiOPO4 - Effects Of Ti-O-Ti Bond Angles and Oxygen Electronegativity,” Chem. Mater. 5, 1257–1267 (1993).
[Crossref]

Hildenbrand, A.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
[Crossref] [PubMed]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

F. Wagner, A. Hildenbrand, J. Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: Threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015 (2007).
[Crossref]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849–13857 (2007).
[Crossref] [PubMed]

Jacobsson, B.

Jarman, R. H.

M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical-Study of the Nonlinear-Optical Properties of KTiOPO4 - Effects Of Ti-O-Ti Bond Angles and Oxygen Electronegativity,” Chem. Mater. 5, 1257–1267 (1993).
[Crossref]

Jiang, Y.

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “EPR and ENDOR study of an oxygen-vacancy-associated Ti3+ center in RbTiOPO4 crystals,” Physica B 400(1-2), 190–197 (2007).
[Crossref]

Josse, M.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Kamimura, T.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45, 766–769 (2006).
[Crossref]

Krol, H.

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Lamaignère, L.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Laurell, F.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[Crossref] [PubMed]

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

Ling, A.

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and Relative Nonlinear Optical Coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO-LiNbO3, and KTP Measured by Phase-Matched 2nd-Harmonic Generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

Migdall, A. L.

Mojaev, E.

M. Tseitlin, E. Mojaev, and M. Roth, “Growth of high resistivity RbTiOPO4 crystals,” J. Cryst. Growth 310(7-9), 1929–1933 (2008).
[Crossref]

Munowitz, M.

M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical-Study of the Nonlinear-Optical Properties of KTiOPO4 - Effects Of Ti-O-Ti Bond Angles and Oxygen Electronegativity,” Chem. Mater. 5, 1257–1267 (1993).
[Crossref]

Murk, V.

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141(1-4), 472–476 (1998).
[Crossref]

Myers, L. E.

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” Proc. SPIE 3610, 44–51 (1999).
[Crossref]

Nakatsuka, M.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45, 766–769 (2006).
[Crossref]

Natoli, J. Y.

Natoli, J.-Y.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849–13857 (2007).
[Crossref] [PubMed]

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Negres, R. A.

Pasiskevicius, V.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[Crossref] [PubMed]

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

Pearlman, A. J.

Poncetta, J. C.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Proulx, P. P.

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141(1-4), 472–476 (1998).
[Crossref]

Rotari, E.

Roth, M.

M. Tseitlin, E. Mojaev, and M. Roth, “Growth of high resistivity RbTiOPO4 crystals,” J. Cryst. Growth 310(7-9), 1929–1933 (2008).
[Crossref]

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “EPR and ENDOR study of an oxygen-vacancy-associated Ti3+ center in RbTiOPO4 crystals,” Physica B 400(1-2), 190–197 (2007).
[Crossref]

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1-2), 131–136 (2001).
[Crossref]

Route, R. K.

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” Proc. SPIE 3610, 44–51 (1999).
[Crossref]

Salathe, R. P.

S. Favre, T. C. Sidler, and R. P. Salathe, “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser,” IEEE J. Quantum Electron. 39(6), 733–740 (2003).
[Crossref]

Sasaki, T.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45, 766–769 (2006).
[Crossref]

Shlichta, P. J.

S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater. 54(1-2), 1–120 (2008).
[Crossref]

Sidler, T. C.

S. Favre, T. C. Sidler, and R. P. Salathe, “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser,” IEEE J. Quantum Electron. 39(6), 733–740 (2003).
[Crossref]

Smirnov, V.

Theodore, F.

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849–13857 (2007).
[Crossref] [PubMed]

F. Wagner, A. Hildenbrand, J. Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: Threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015 (2007).
[Crossref]

Théodore, F.

Tseitlin, M.

M. Tseitlin, E. Mojaev, and M. Roth, “Growth of high resistivity RbTiOPO4 crystals,” J. Cryst. Growth 310(7-9), 1929–1933 (2008).
[Crossref]

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “EPR and ENDOR study of an oxygen-vacancy-associated Ti3+ center in RbTiOPO4 crystals,” Physica B 400(1-2), 190–197 (2007).
[Crossref]

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1-2), 131–136 (2001).
[Crossref]

Vassiltsenko, V.

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141(1-4), 472–476 (1998).
[Crossref]

Verma, S.

S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater. 54(1-2), 1–120 (2008).
[Crossref]

Wagner, F.

F. Wagner, A. Hildenbrand, J. Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: Threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015 (2007).
[Crossref]

Wagner, F. R.

Wang, S.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

Yoshida, H.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45, 766–769 (2006).
[Crossref]

Yoshida, K.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45, 766–769 (2006).
[Crossref]

Yoshimura, M.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45, 766–769 (2006).
[Crossref]

Zaitseva, N. P.

Appl. Opt. (2)

Chem. Mater. (1)

M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical-Study of the Nonlinear-Optical Properties of KTiOPO4 - Effects Of Ti-O-Ti Bond Angles and Oxygen Electronegativity,” Chem. Mater. 5, 1257–1267 (1993).
[Crossref]

Glass Phys. Chem. (1)

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31(1), 86–95 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and Relative Nonlinear Optical Coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO-LiNbO3, and KTP Measured by Phase-Matched 2nd-Harmonic Generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

S. Favre, T. C. Sidler, and R. P. Salathe, “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser,” IEEE J. Quantum Electron. 39(6), 733–740 (2003).
[Crossref]

J. Appl. Phys. (1)

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

J. Cryst. Growth (1)

M. Tseitlin, E. Mojaev, and M. Roth, “Growth of high resistivity RbTiOPO4 crystals,” J. Cryst. Growth 310(7-9), 1929–1933 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45, 766–769 (2006).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141(1-4), 472–476 (1998).
[Crossref]

Opt. Commun. (1)

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Opt. Eng. (1)

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. (1)

M. Roth, N. Angert, M. Tseitlin, and A. Alexandrovski, “On the optical quality of KTP crystals for nonlinear optical and electro-optic applications,” Opt. Mater. 16(1-2), 131–136 (2001).
[Crossref]

Physica B (1)

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “EPR and ENDOR study of an oxygen-vacancy-associated Ti3+ center in RbTiOPO4 crystals,” Physica B 400(1-2), 190–197 (2007).
[Crossref]

Proc. SPIE (2)

F. Wagner, A. Hildenbrand, J. Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: Threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015 (2007).
[Crossref]

A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” Proc. SPIE 3610, 44–51 (1999).
[Crossref]

Prog. Cryst. Growth Charact. Mater. (1)

S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater. 54(1-2), 1–120 (2008).
[Crossref]

Rev. Sci. Instrum. (1)

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Other (2)

International Organization of, Standardization, “Determination of laser-damage threshold of optical surfaces Part 2: S-on-1 test,” (ISO 11254–2, 2001), p. 29.

G. S. Settles, “Shadowgraph Techniques,” in Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, 2001), p. 143.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Optical shadowgraph of sample 1 (y-cut, 34 mm x 34 mm x 10 mm). Different growth sectors can be distinguished as partially indicated by the dashed lines. Few visible defects are present within a given growth sector. Laser damage tests have been performed in sectors A and B using a polarization along P. Infrared absorption measurements have been performed along the dotted lines L1-L4 and at locations YA and YB (see Fig. 2).
Fig. 2
Fig. 2 Infrared absorption measurements of sample 1 by the photothermal lensing method: L2 and L3 are line scans along the z-axis of the crystal. YA and YB are in-depth scans along the y-axis of the crystal. (See Fig. 1 for the locations.) Sector A has a 1.6-2 times higher absorption as sector B. The distances in traces YA and YB indicate the sample displacement and have to be multiplied with the refractive index in order to convert them to physical coordinates in the crystal.
Fig. 3
Fig. 3 Optical shadowgraph of sample 2 and 3 (y-cut, 10 mm x 10 mm x 10 mm). Different zones can be distinguished as indicated by the dashed lines. Each zone is characterized by a certain type of defects as sensed by optical shadowgraphy.
Fig. 4
Fig. 4 Schematic of the laser damage measurement setup. A Quantel Ultra GRM laser (1064nm, 6ns, 10Hz) is focused on the sample. Damage detection is preformed by imaging of backscattered light with high depth of field and subsequent image processing.
Fig. 5
Fig. 5 Damage probability curves in 200-on-1 mode in y-cut RTP using a polarization at 45° to the crystal z-axis. Figure a: Comparison of the growth sectors A and B in sample 1. The solid line is a fit to the data using the Gaussian model [24]. Figure b: Comparison of the different zones in samples 2 and 3 to the fit of the data in Fig. 5a.
Fig. 6
Fig. 6 Damage probability curves in 200-on-1 mode in x-cut RTP using a polarization at 45° to the crystal z-axis. The sample from provider β has much lower ionic conductivity than the one from provider α. The solid line is again a fit to the data using the Gaussian model [24].

Tables (1)

Tables Icon

Table 1 Ionic conductivities along the z-axis and fluxes used for the growth of the samples

Metrics