Abstract

Rare-earth-activated BaY2Si3O10 (BYSO) phosphors were synthesized via a solid-state reaction. BaY2Si3O10:Ce3+ yields an indigo-blue emission peak at 404 nm according to excitation at 334 nm attributed to the Ce3+ 4f→5d transition. BaY2Si3O10:Tb3+ typically generates green emission peaks resulting from the 5D47FJ transition. BaY2Si3O10:Eu3+ exhibits red emission peaks upon excitation at 393 nm. The quantum efficiency of these phosphors was found to be 53%, 55%, and 63% of commodity. The results in this work demonstrate that these phosphors with new compositions are good candidate luminescent materials for use in plasma display panels and light-emitting diodes, excited from VUV to UV.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Blue-white-green tunable luminescence from Ba2Gd2Si4O13:Ce3+,Tb3+ phosphors excited by ultraviolet light

Hai Guo, Hao Zhang, JingJing Li, and Fang Li
Opt. Express 18(26) 27257-27262 (2010)

Energy transfer between Ce3+ and Tb3+ and the enhanced luminescence of a green phosphor SrB2O4:Ce3+, Tb3+, Na+

Shaojun Sun, Li Wu, Huan Yi, Liwei Wu, Jingyuan Ji, Chunling Zhang, Yi Zhang, Yongfa Kong, and Jingjun Xu
Opt. Mater. Express 6(4) 1172-1185 (2016)

Eu2+-activated silicon-oxynitride Ca3Si2O4N2: a green-emitting phosphor for white LEDs

Yi-Chen Chiu, Chien-Hao Huang, Te-Ju Lee, Wei-Ren Liu, Yao-Tsung Yeh, Shyue-Ming Jang, and Ru-Shi Liu
Opt. Express 19(S3) A331-A339 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhang and Y. Wang, “UV-VUV excitation luminescence properties of Eu2+-doped Ba2MSi2O7 (M=Mg, Zn),” J. Electrochem. Soc. 154, 2, J62–J64 (2007).
    [Crossref]
  2. L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mat. Sci. Eng. B-Solid 103, 271–275 (2003).
    [Crossref]
  3. S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip, and G. Blasse, “Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row,” J. Alloy. Compd. 241, 75–81 (1996).
    [Crossref]
  4. S. Kubota and M. Shimada, “Sr3Al10SiO20:Eu2+ as a blue luminescent material for plasma displays,” Appl. Phys. Lett. 81, 15, 2749–2751 (2002).
    [Crossref]
  5. J. K. Park, M. A. Lim, K. J. Choi, and C. H. Kim, “Luminescence characteristics of yellow emitting Ba3SiO5:Eu2+ phosphor,” J. Mater. Sci. 40, 15, 2069–2071 (2005).
    [Crossref]
  6. J. Liu, J. Sun, and C. Shi, “A new luminescent material:Li2CaSiO4:Eu2+,” Mater. Lett. 60, 2830–2833 (2006).
    [Crossref]
  7. M. P. Saradhi and U. V. Varadaraju, “Photoluminescence studies on Eu2+-activated Li2SrSiO4-a potential orange-yellow phosphor for solid-state lighting,” Chem. Mater. 18, 5267–5272 (2006).
    [Crossref]
  8. X. Bai, G. Zhang, and P. Fu, “Photoluminescence properties of a novel phosphor, Na3La9O3(BO3)8:RE3+ (RE=Eu, Tb),” J. Solid State Chem. 180, 1792–1795 (2007).
    [Crossref]
  9. R. J. Xie, M. Mitomo, K. Uheda, F. F. Xu, and Y. Akimune, “Preparation and luminescence spectra of calcium- and rare-earth (R=Eu, Tb, and Pr)-codoped α-SiAlON ceramics,” J. Am. Ceram. Soc. 85, 5, 1229–1234 (2002).
    [Crossref]
  10. J. W. H. van Krevel, J. W. T. Van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence properties of terbium-, cerium-, or europium-doped α-sialon materials,” J. Solid State Chem. 165, 19–24 (2002).
    [Crossref]
  11. H. Zhang, T. Horikawa, and K. I. Machida, “Preparation, structure, and luminescence properties of Y2Si4N6C:Ce3+ and Y2Si4N6C:Tb3+,” J. Electrochem. Soc. 153, 7, H151–H154 (2006).
    [Crossref]
  12. W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A study on the luminescence properties of CaAlBO4:RE3+ (RE=Ce, Tb, and Eu),” J. Electrochem. Soc. 155, 9, J252–J255 (2008).
    [Crossref]
  13. U. Kolitsch, M. Wierzbicka, and E. Tillmanns, “BaY2Si3O10: a new flux-grown trisilicate,” Acta Cryst. C62, i97–i99 (2006).
  14. G. Blasse and B. C. Grabmaier, Luminescent Materials, (Springer, Berlin, German, 1994), Chap. 3.
    [Crossref]
  15. R. P. Rao, “Tm3+ activated lanthanum phosphate: a blue PDP phosphor,” J. Lumin. 113, 271–278 (2005).
    [Crossref]
  16. R. P. Rao, “Tb3+ activated green phosphors for plasma display panel applications,” J. Electrochem. Soc. 150, 8, H165–H171 (2003).
    [Crossref]
  17. S. Bhushan and M. V. Chukichev, “Temperature-dependent studies of cathodoluminescence of green band of ZnO crystals,” J. Mater. Sci. Lett. 9, 319–321 (1988).
    [Crossref]
  18. R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101–191103 (2007).
    [Crossref]
  19. C. C. Lin, R. S. Liu, Y. S. Tang, and S. F. Hu, “Full-color and thermally stable KSrPO4:Ln (Ln=Eu, Tb, Sm) phosphors for white-light-emitting diodes,” J. Electrochem. Soc. 155, 9, J248–J251 (2008).
    [Crossref]
  20. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

2008 (2)

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A study on the luminescence properties of CaAlBO4:RE3+ (RE=Ce, Tb, and Eu),” J. Electrochem. Soc. 155, 9, J252–J255 (2008).
[Crossref]

C. C. Lin, R. S. Liu, Y. S. Tang, and S. F. Hu, “Full-color and thermally stable KSrPO4:Ln (Ln=Eu, Tb, Sm) phosphors for white-light-emitting diodes,” J. Electrochem. Soc. 155, 9, J248–J251 (2008).
[Crossref]

2007 (3)

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101–191103 (2007).
[Crossref]

Z. Zhang and Y. Wang, “UV-VUV excitation luminescence properties of Eu2+-doped Ba2MSi2O7 (M=Mg, Zn),” J. Electrochem. Soc. 154, 2, J62–J64 (2007).
[Crossref]

X. Bai, G. Zhang, and P. Fu, “Photoluminescence properties of a novel phosphor, Na3La9O3(BO3)8:RE3+ (RE=Eu, Tb),” J. Solid State Chem. 180, 1792–1795 (2007).
[Crossref]

2006 (4)

J. Liu, J. Sun, and C. Shi, “A new luminescent material:Li2CaSiO4:Eu2+,” Mater. Lett. 60, 2830–2833 (2006).
[Crossref]

M. P. Saradhi and U. V. Varadaraju, “Photoluminescence studies on Eu2+-activated Li2SrSiO4-a potential orange-yellow phosphor for solid-state lighting,” Chem. Mater. 18, 5267–5272 (2006).
[Crossref]

H. Zhang, T. Horikawa, and K. I. Machida, “Preparation, structure, and luminescence properties of Y2Si4N6C:Ce3+ and Y2Si4N6C:Tb3+,” J. Electrochem. Soc. 153, 7, H151–H154 (2006).
[Crossref]

U. Kolitsch, M. Wierzbicka, and E. Tillmanns, “BaY2Si3O10: a new flux-grown trisilicate,” Acta Cryst. C62, i97–i99 (2006).

2005 (2)

R. P. Rao, “Tm3+ activated lanthanum phosphate: a blue PDP phosphor,” J. Lumin. 113, 271–278 (2005).
[Crossref]

J. K. Park, M. A. Lim, K. J. Choi, and C. H. Kim, “Luminescence characteristics of yellow emitting Ba3SiO5:Eu2+ phosphor,” J. Mater. Sci. 40, 15, 2069–2071 (2005).
[Crossref]

2003 (2)

L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mat. Sci. Eng. B-Solid 103, 271–275 (2003).
[Crossref]

R. P. Rao, “Tb3+ activated green phosphors for plasma display panel applications,” J. Electrochem. Soc. 150, 8, H165–H171 (2003).
[Crossref]

2002 (3)

S. Kubota and M. Shimada, “Sr3Al10SiO20:Eu2+ as a blue luminescent material for plasma displays,” Appl. Phys. Lett. 81, 15, 2749–2751 (2002).
[Crossref]

R. J. Xie, M. Mitomo, K. Uheda, F. F. Xu, and Y. Akimune, “Preparation and luminescence spectra of calcium- and rare-earth (R=Eu, Tb, and Pr)-codoped α-SiAlON ceramics,” J. Am. Ceram. Soc. 85, 5, 1229–1234 (2002).
[Crossref]

J. W. H. van Krevel, J. W. T. Van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence properties of terbium-, cerium-, or europium-doped α-sialon materials,” J. Solid State Chem. 165, 19–24 (2002).
[Crossref]

1996 (1)

S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip, and G. Blasse, “Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row,” J. Alloy. Compd. 241, 75–81 (1996).
[Crossref]

1988 (1)

S. Bhushan and M. V. Chukichev, “Temperature-dependent studies of cathodoluminescence of green band of ZnO crystals,” J. Mater. Sci. Lett. 9, 319–321 (1988).
[Crossref]

1969 (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

Akimune, Y.

R. J. Xie, M. Mitomo, K. Uheda, F. F. Xu, and Y. Akimune, “Preparation and luminescence spectra of calcium- and rare-earth (R=Eu, Tb, and Pr)-codoped α-SiAlON ceramics,” J. Am. Ceram. Soc. 85, 5, 1229–1234 (2002).
[Crossref]

Bai, X.

X. Bai, G. Zhang, and P. Fu, “Photoluminescence properties of a novel phosphor, Na3La9O3(BO3)8:RE3+ (RE=Eu, Tb),” J. Solid State Chem. 180, 1792–1795 (2007).
[Crossref]

Bhushan, S.

S. Bhushan and M. V. Chukichev, “Temperature-dependent studies of cathodoluminescence of green band of ZnO crystals,” J. Mater. Sci. Lett. 9, 319–321 (1988).
[Crossref]

Blasse, G.

S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip, and G. Blasse, “Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row,” J. Alloy. Compd. 241, 75–81 (1996).
[Crossref]

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

G. Blasse and B. C. Grabmaier, Luminescent Materials, (Springer, Berlin, German, 1994), Chap. 3.
[Crossref]

Chang, C.

L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mat. Sci. Eng. B-Solid 103, 271–275 (2003).
[Crossref]

Chen, T. M.

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A study on the luminescence properties of CaAlBO4:RE3+ (RE=Ce, Tb, and Eu),” J. Electrochem. Soc. 155, 9, J252–J255 (2008).
[Crossref]

Chiu, Y. C.

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A study on the luminescence properties of CaAlBO4:RE3+ (RE=Ce, Tb, and Eu),” J. Electrochem. Soc. 155, 9, J252–J255 (2008).
[Crossref]

Choi, K. J.

J. K. Park, M. A. Lim, K. J. Choi, and C. H. Kim, “Luminescence characteristics of yellow emitting Ba3SiO5:Eu2+ phosphor,” J. Mater. Sci. 40, 15, 2069–2071 (2005).
[Crossref]

Chukichev, M. V.

S. Bhushan and M. V. Chukichev, “Temperature-dependent studies of cathodoluminescence of green band of ZnO crystals,” J. Mater. Sci. Lett. 9, 319–321 (1988).
[Crossref]

Feng, C.

L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mat. Sci. Eng. B-Solid 103, 271–275 (2003).
[Crossref]

Fu, P.

X. Bai, G. Zhang, and P. Fu, “Photoluminescence properties of a novel phosphor, Na3La9O3(BO3)8:RE3+ (RE=Eu, Tb),” J. Solid State Chem. 180, 1792–1795 (2007).
[Crossref]

Grabmaier, B. C.

G. Blasse and B. C. Grabmaier, Luminescent Materials, (Springer, Berlin, German, 1994), Chap. 3.
[Crossref]

Hintzen, H. T.

J. W. H. van Krevel, J. W. T. Van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence properties of terbium-, cerium-, or europium-doped α-sialon materials,” J. Solid State Chem. 165, 19–24 (2002).
[Crossref]

Hirosaki, N.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101–191103 (2007).
[Crossref]

Horikawa, T.

H. Zhang, T. Horikawa, and K. I. Machida, “Preparation, structure, and luminescence properties of Y2Si4N6C:Ce3+ and Y2Si4N6C:Tb3+,” J. Electrochem. Soc. 153, 7, H151–H154 (2006).
[Crossref]

Hu, S. F.

C. C. Lin, R. S. Liu, Y. S. Tang, and S. F. Hu, “Full-color and thermally stable KSrPO4:Ln (Ln=Eu, Tb, Sm) phosphors for white-light-emitting diodes,” J. Electrochem. Soc. 155, 9, J248–J251 (2008).
[Crossref]

Jang, S. M.

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A study on the luminescence properties of CaAlBO4:RE3+ (RE=Ce, Tb, and Eu),” J. Electrochem. Soc. 155, 9, J252–J255 (2008).
[Crossref]

Jiang, L.

L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mat. Sci. Eng. B-Solid 103, 271–275 (2003).
[Crossref]

Kim, C. H.

J. K. Park, M. A. Lim, K. J. Choi, and C. H. Kim, “Luminescence characteristics of yellow emitting Ba3SiO5:Eu2+ phosphor,” J. Mater. Sci. 40, 15, 2069–2071 (2005).
[Crossref]

Kimura, N.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101–191103 (2007).
[Crossref]

Kolitsch, U.

U. Kolitsch, M. Wierzbicka, and E. Tillmanns, “BaY2Si3O10: a new flux-grown trisilicate,” Acta Cryst. C62, i97–i99 (2006).

Kubota, S.

S. Kubota and M. Shimada, “Sr3Al10SiO20:Eu2+ as a blue luminescent material for plasma displays,” Appl. Phys. Lett. 81, 15, 2749–2751 (2002).
[Crossref]

Lim, M. A.

J. K. Park, M. A. Lim, K. J. Choi, and C. H. Kim, “Luminescence characteristics of yellow emitting Ba3SiO5:Eu2+ phosphor,” J. Mater. Sci. 40, 15, 2069–2071 (2005).
[Crossref]

Lin, C. C.

C. C. Lin, R. S. Liu, Y. S. Tang, and S. F. Hu, “Full-color and thermally stable KSrPO4:Ln (Ln=Eu, Tb, Sm) phosphors for white-light-emitting diodes,” J. Electrochem. Soc. 155, 9, J248–J251 (2008).
[Crossref]

Liu, J.

J. Liu, J. Sun, and C. Shi, “A new luminescent material:Li2CaSiO4:Eu2+,” Mater. Lett. 60, 2830–2833 (2006).
[Crossref]

Liu, R. S.

C. C. Lin, R. S. Liu, Y. S. Tang, and S. F. Hu, “Full-color and thermally stable KSrPO4:Ln (Ln=Eu, Tb, Sm) phosphors for white-light-emitting diodes,” J. Electrochem. Soc. 155, 9, J248–J251 (2008).
[Crossref]

Liu, W. R.

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A study on the luminescence properties of CaAlBO4:RE3+ (RE=Ce, Tb, and Eu),” J. Electrochem. Soc. 155, 9, J252–J255 (2008).
[Crossref]

Machida, K. I.

H. Zhang, T. Horikawa, and K. I. Machida, “Preparation, structure, and luminescence properties of Y2Si4N6C:Ce3+ and Y2Si4N6C:Tb3+,” J. Electrochem. Soc. 153, 7, H151–H154 (2006).
[Crossref]

Mandal, H.

J. W. H. van Krevel, J. W. T. Van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence properties of terbium-, cerium-, or europium-doped α-sialon materials,” J. Solid State Chem. 165, 19–24 (2002).
[Crossref]

Mao, D.

L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mat. Sci. Eng. B-Solid 103, 271–275 (2003).
[Crossref]

Metselaar, R.

J. W. H. van Krevel, J. W. T. Van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence properties of terbium-, cerium-, or europium-doped α-sialon materials,” J. Solid State Chem. 165, 19–24 (2002).
[Crossref]

Mitomo, M.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101–191103 (2007).
[Crossref]

R. J. Xie, M. Mitomo, K. Uheda, F. F. Xu, and Y. Akimune, “Preparation and luminescence spectra of calcium- and rare-earth (R=Eu, Tb, and Pr)-codoped α-SiAlON ceramics,” J. Am. Ceram. Soc. 85, 5, 1229–1234 (2002).
[Crossref]

Park, J. K.

J. K. Park, M. A. Lim, K. J. Choi, and C. H. Kim, “Luminescence characteristics of yellow emitting Ba3SiO5:Eu2+ phosphor,” J. Mater. Sci. 40, 15, 2069–2071 (2005).
[Crossref]

Poort, S. H. M.

S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip, and G. Blasse, “Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row,” J. Alloy. Compd. 241, 75–81 (1996).
[Crossref]

Rao, R. P.

R. P. Rao, “Tm3+ activated lanthanum phosphate: a blue PDP phosphor,” J. Lumin. 113, 271–278 (2005).
[Crossref]

R. P. Rao, “Tb3+ activated green phosphors for plasma display panel applications,” J. Electrochem. Soc. 150, 8, H165–H171 (2003).
[Crossref]

Reijnhoudt, H. M.

S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip, and G. Blasse, “Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row,” J. Alloy. Compd. 241, 75–81 (1996).
[Crossref]

Sakuma, K.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101–191103 (2007).
[Crossref]

Saradhi, M. P.

M. P. Saradhi and U. V. Varadaraju, “Photoluminescence studies on Eu2+-activated Li2SrSiO4-a potential orange-yellow phosphor for solid-state lighting,” Chem. Mater. 18, 5267–5272 (2006).
[Crossref]

Shi, C.

J. Liu, J. Sun, and C. Shi, “A new luminescent material:Li2CaSiO4:Eu2+,” Mater. Lett. 60, 2830–2833 (2006).
[Crossref]

Shimada, M.

S. Kubota and M. Shimada, “Sr3Al10SiO20:Eu2+ as a blue luminescent material for plasma displays,” Appl. Phys. Lett. 81, 15, 2749–2751 (2002).
[Crossref]

Sun, J.

J. Liu, J. Sun, and C. Shi, “A new luminescent material:Li2CaSiO4:Eu2+,” Mater. Lett. 60, 2830–2833 (2006).
[Crossref]

Tang, Y. S.

C. C. Lin, R. S. Liu, Y. S. Tang, and S. F. Hu, “Full-color and thermally stable KSrPO4:Ln (Ln=Eu, Tb, Sm) phosphors for white-light-emitting diodes,” J. Electrochem. Soc. 155, 9, J248–J251 (2008).
[Crossref]

Tillmanns, E.

U. Kolitsch, M. Wierzbicka, and E. Tillmanns, “BaY2Si3O10: a new flux-grown trisilicate,” Acta Cryst. C62, i97–i99 (2006).

Tung, C. Y.

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A study on the luminescence properties of CaAlBO4:RE3+ (RE=Ce, Tb, and Eu),” J. Electrochem. Soc. 155, 9, J252–J255 (2008).
[Crossref]

Uheda, K.

R. J. Xie, M. Mitomo, K. Uheda, F. F. Xu, and Y. Akimune, “Preparation and luminescence spectra of calcium- and rare-earth (R=Eu, Tb, and Pr)-codoped α-SiAlON ceramics,” J. Am. Ceram. Soc. 85, 5, 1229–1234 (2002).
[Crossref]

van der Kuip, H. O. T.

S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip, and G. Blasse, “Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row,” J. Alloy. Compd. 241, 75–81 (1996).
[Crossref]

van Krevel, J. W. H.

J. W. H. van Krevel, J. W. T. Van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence properties of terbium-, cerium-, or europium-doped α-sialon materials,” J. Solid State Chem. 165, 19–24 (2002).
[Crossref]

Van Rutten, J. W. T.

J. W. H. van Krevel, J. W. T. Van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence properties of terbium-, cerium-, or europium-doped α-sialon materials,” J. Solid State Chem. 165, 19–24 (2002).
[Crossref]

Varadaraju, U. V.

M. P. Saradhi and U. V. Varadaraju, “Photoluminescence studies on Eu2+-activated Li2SrSiO4-a potential orange-yellow phosphor for solid-state lighting,” Chem. Mater. 18, 5267–5272 (2006).
[Crossref]

Wang, Y.

Z. Zhang and Y. Wang, “UV-VUV excitation luminescence properties of Eu2+-doped Ba2MSi2O7 (M=Mg, Zn),” J. Electrochem. Soc. 154, 2, J62–J64 (2007).
[Crossref]

Wierzbicka, M.

U. Kolitsch, M. Wierzbicka, and E. Tillmanns, “BaY2Si3O10: a new flux-grown trisilicate,” Acta Cryst. C62, i97–i99 (2006).

Xie, R. J.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101–191103 (2007).
[Crossref]

R. J. Xie, M. Mitomo, K. Uheda, F. F. Xu, and Y. Akimune, “Preparation and luminescence spectra of calcium- and rare-earth (R=Eu, Tb, and Pr)-codoped α-SiAlON ceramics,” J. Am. Ceram. Soc. 85, 5, 1229–1234 (2002).
[Crossref]

Xu, F. F.

R. J. Xie, M. Mitomo, K. Uheda, F. F. Xu, and Y. Akimune, “Preparation and luminescence spectra of calcium- and rare-earth (R=Eu, Tb, and Pr)-codoped α-SiAlON ceramics,” J. Am. Ceram. Soc. 85, 5, 1229–1234 (2002).
[Crossref]

Yeh, Y. T.

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A study on the luminescence properties of CaAlBO4:RE3+ (RE=Ce, Tb, and Eu),” J. Electrochem. Soc. 155, 9, J252–J255 (2008).
[Crossref]

Zhang, G.

X. Bai, G. Zhang, and P. Fu, “Photoluminescence properties of a novel phosphor, Na3La9O3(BO3)8:RE3+ (RE=Eu, Tb),” J. Solid State Chem. 180, 1792–1795 (2007).
[Crossref]

Zhang, H.

H. Zhang, T. Horikawa, and K. I. Machida, “Preparation, structure, and luminescence properties of Y2Si4N6C:Ce3+ and Y2Si4N6C:Tb3+,” J. Electrochem. Soc. 153, 7, H151–H154 (2006).
[Crossref]

Zhang, Z.

Z. Zhang and Y. Wang, “UV-VUV excitation luminescence properties of Eu2+-doped Ba2MSi2O7 (M=Mg, Zn),” J. Electrochem. Soc. 154, 2, J62–J64 (2007).
[Crossref]

Acta Cryst. (1)

U. Kolitsch, M. Wierzbicka, and E. Tillmanns, “BaY2Si3O10: a new flux-grown trisilicate,” Acta Cryst. C62, i97–i99 (2006).

Appl. Phys. Lett. (2)

S. Kubota and M. Shimada, “Sr3Al10SiO20:Eu2+ as a blue luminescent material for plasma displays,” Appl. Phys. Lett. 81, 15, 2749–2751 (2002).
[Crossref]

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101–191103 (2007).
[Crossref]

Chem. Mater. (1)

M. P. Saradhi and U. V. Varadaraju, “Photoluminescence studies on Eu2+-activated Li2SrSiO4-a potential orange-yellow phosphor for solid-state lighting,” Chem. Mater. 18, 5267–5272 (2006).
[Crossref]

J. Alloy. Compd. (1)

S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip, and G. Blasse, “Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row,” J. Alloy. Compd. 241, 75–81 (1996).
[Crossref]

J. Am. Ceram. Soc. (1)

R. J. Xie, M. Mitomo, K. Uheda, F. F. Xu, and Y. Akimune, “Preparation and luminescence spectra of calcium- and rare-earth (R=Eu, Tb, and Pr)-codoped α-SiAlON ceramics,” J. Am. Ceram. Soc. 85, 5, 1229–1234 (2002).
[Crossref]

J. Electrochem. Soc. (5)

Z. Zhang and Y. Wang, “UV-VUV excitation luminescence properties of Eu2+-doped Ba2MSi2O7 (M=Mg, Zn),” J. Electrochem. Soc. 154, 2, J62–J64 (2007).
[Crossref]

R. P. Rao, “Tb3+ activated green phosphors for plasma display panel applications,” J. Electrochem. Soc. 150, 8, H165–H171 (2003).
[Crossref]

H. Zhang, T. Horikawa, and K. I. Machida, “Preparation, structure, and luminescence properties of Y2Si4N6C:Ce3+ and Y2Si4N6C:Tb3+,” J. Electrochem. Soc. 153, 7, H151–H154 (2006).
[Crossref]

W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, and T. M. Chen, “A study on the luminescence properties of CaAlBO4:RE3+ (RE=Ce, Tb, and Eu),” J. Electrochem. Soc. 155, 9, J252–J255 (2008).
[Crossref]

C. C. Lin, R. S. Liu, Y. S. Tang, and S. F. Hu, “Full-color and thermally stable KSrPO4:Ln (Ln=Eu, Tb, Sm) phosphors for white-light-emitting diodes,” J. Electrochem. Soc. 155, 9, J248–J251 (2008).
[Crossref]

J. Lumin. (1)

R. P. Rao, “Tm3+ activated lanthanum phosphate: a blue PDP phosphor,” J. Lumin. 113, 271–278 (2005).
[Crossref]

J. Mater. Sci. (1)

J. K. Park, M. A. Lim, K. J. Choi, and C. H. Kim, “Luminescence characteristics of yellow emitting Ba3SiO5:Eu2+ phosphor,” J. Mater. Sci. 40, 15, 2069–2071 (2005).
[Crossref]

J. Mater. Sci. Lett. (1)

S. Bhushan and M. V. Chukichev, “Temperature-dependent studies of cathodoluminescence of green band of ZnO crystals,” J. Mater. Sci. Lett. 9, 319–321 (1988).
[Crossref]

J. Solid State Chem. (2)

J. W. H. van Krevel, J. W. T. Van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence properties of terbium-, cerium-, or europium-doped α-sialon materials,” J. Solid State Chem. 165, 19–24 (2002).
[Crossref]

X. Bai, G. Zhang, and P. Fu, “Photoluminescence properties of a novel phosphor, Na3La9O3(BO3)8:RE3+ (RE=Eu, Tb),” J. Solid State Chem. 180, 1792–1795 (2007).
[Crossref]

Mat. Sci. Eng. B-Solid (1)

L. Jiang, C. Chang, D. Mao, and C. Feng, “Concentration quenching of Eu2+ in Ca2MgSi2O7:Eu2+ phosphor,” Mat. Sci. Eng. B-Solid 103, 271–275 (2003).
[Crossref]

Mater. Lett. (1)

J. Liu, J. Sun, and C. Shi, “A new luminescent material:Li2CaSiO4:Eu2+,” Mater. Lett. 60, 2830–2833 (2006).
[Crossref]

Philips Res. Rep. (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

Other (1)

G. Blasse and B. C. Grabmaier, Luminescent Materials, (Springer, Berlin, German, 1994), Chap. 3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) XRD patterns of synthesized BaY2Si3O10 at different temperatures (I) 1100°C; (II) 1200°C; (III) 1300°C; (IV) 1350°C, and (V) pure BaY2Si3O10 (ICSD file no.240470). (b) The atom structure of unit cell in this chemical compound.
Fig. 2.
Fig. 2. Photoluminescence spectra of BaY2Si3O10 samples which prepared under various activators by (a) RE=Ce3+, (b) RE=Tb3+, and (c) RE=Eu3+ measured at room temperature, respectively.
Fig. 3.
Fig. 3. VUV PL and PLE spectra of BaY2Si3O10:RE involving in (a) RE=Ce3+, (b) RE=Tb3+, and (c) RE=Eu3+ measured at room temperature, respectively.
Fig. 4.
Fig. 4. Comparison of UV-Vis diffuse reflectance spectra of BaY2Si3O10 (Host) and assynthesized BaY2Si3O10:RE (RE=Ce3+, Tb3+, Eu3+) phosphors.
Fig. 5.
Fig. 5. Relative emission intensity dependence of temperature effect of as-synthesized BaY2Si3O10:RE (RE=5%Ce3+, 40%Tb3+, 60%Eu3+) phosphors.

Tables (1)

Tables Icon

Table. 1. Variation performances of BaY2Si3O10:RE (RE=Ce3+, Tb3+, Eu3+) measured at different condition.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I (T)=I01+cexp(EkT)
Rc 2 [3V4πxcZ]13
Φ = Ei(λ)(1A)E0(λ)Le(λ)A

Metrics