Abstract

Dramatic increase in the bandwidth of optical fiber inline polarizer can be achieved by using metal nano-grid on the fiber tip. However, high extinction ratio of such fiber polarizer requires high spatial frequency metal nano girds with high aspect ratio on the small area of optical fiber tip. We report the development of a nano-fabrication process on the optical fiber tip, and the design and realization of the first ultra-wideband fiber inline polarization device with Au nano gird fabricated on a single mode optical fiber end face.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optically bifacial thin-film wire-grid polarizers with nano-patterns of a graded metal-dielectric composite layer

Jong Hyuk Lee, Young-Woo Song, Joon-gu Lee, Jaeheung Ha, Kyu H. Hwang, and Dong-Sik Zang
Opt. Express 16(21) 16867-16876 (2008)

Ultra-wideband Ge-rich silicon germanium mid-infrared polarization rotator with mode hybridization flattening

V. Vakarin, W. N. Ye, J. M. Ramírez, Q. Liu, J. Frigerio, A. Ballabio, G. Isella, L. Vivien, C. Alonso-Ramos, P. Cheben, and D. Marris-Morini
Opt. Express 27(7) 9838-9847 (2019)

Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip

Ali El Eter, Nyha M. Hameed, Fadi I. Baida, Roland Salut, Claudine Filiatre, Dusan Nedeljkovic, Elie Atie, Samuel Bole, and Thierry Grosjean
Opt. Express 22(8) 10072-10080 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Sunnerud, M. Karlsson, C. Xie, and P. A. Andrekson, “Polarization-mode dispersion in high-speed fiber-optic transmission systems,” J. Lightwave Technol. 20(12), (2002).
    [Crossref]
  2. D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987-1988-1988).
    [Crossref]
  3. M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
    [Crossref]
  4. H. C. Su and L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photon. Technol. Lett. 15(10), 1357–1359 (2003).
    [Crossref]
  5. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “Single-mode fiber-optic polarizer,” Opt. Lett. 5(11), 479 (1980).
    [Crossref] [PubMed]
  6. J. R. Feth and C. L. Chang, “Metal-clad fiber-optic cutoff polarizer,” Opt. Lett. 11(6), 386–388 (1986).
    [Crossref] [PubMed]
  7. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw,“Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8(4), 538–544 (1990).
    [Crossref]
  8. M. N. Zervas and I. P. Giles, “Optical fiber surface plasmon wave polarizers with enhanced performance,” Electron. Lett. 25(5), 321 (1989).
    [Crossref]
  9. A. Wang, V. Arya, M. H. Nasta, K. A. Murphy, and R. O. Claus, “Optical fiber polarizer based on highly birefringent single-mode fiber,” Opt. Lett. 20(3), 279–281 (1995).
    [Crossref] [PubMed]
  10. G. R. Bird and M. Parrish., “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50(9), 886–891 (1960).
    [Crossref]
  11. A. Petrušis, J. H. Rector, K. Smith, S. de Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibers,” J. Micromech. Microeng. 19(4), 047001 (2009).
    [Crossref]
  12. E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
    [Crossref] [PubMed]
  13. H. Sotobayashi, J. T. Gopinath, H. M. Shen, J. W. Sickler, P. T. Rakich, and E. P. Ippen, “Supercontinuum generation and its applications,” Proc. SPIE 6014, 60140T (2005), doi:.
    [Crossref]
  14. http://www.nktphotonics.com/side5228.html
  15. H. Wang, M. W. Jenkins, and A. M. Rollins, “A combined multiple-SLED broadband light source at 1300 nm for high resolution optical coherence tomography,” Opt. Commun. 281(7), 1896–1900 (2008).
    [Crossref]
  16. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]

2009 (2)

A. Petrušis, J. H. Rector, K. Smith, S. de Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibers,” J. Micromech. Microeng. 19(4), 047001 (2009).
[Crossref]

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

2008 (1)

H. Wang, M. W. Jenkins, and A. M. Rollins, “A combined multiple-SLED broadband light source at 1300 nm for high resolution optical coherence tomography,” Opt. Commun. 281(7), 1896–1900 (2008).
[Crossref]

2005 (1)

H. Sotobayashi, J. T. Gopinath, H. M. Shen, J. W. Sickler, P. T. Rakich, and E. P. Ippen, “Supercontinuum generation and its applications,” Proc. SPIE 6014, 60140T (2005), doi:.
[Crossref]

2003 (2)

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

H. C. Su and L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photon. Technol. Lett. 15(10), 1357–1359 (2003).
[Crossref]

2002 (1)

H. Sunnerud, M. Karlsson, C. Xie, and P. A. Andrekson, “Polarization-mode dispersion in high-speed fiber-optic transmission systems,” J. Lightwave Technol. 20(12), (2002).
[Crossref]

1998 (1)

1995 (1)

1990 (1)

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw,“Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8(4), 538–544 (1990).
[Crossref]

1989 (1)

M. N. Zervas and I. P. Giles, “Optical fiber surface plasmon wave polarizers with enhanced performance,” Electron. Lett. 25(5), 321 (1989).
[Crossref]

1986 (1)

1980 (1)

1960 (1)

Andrekson, P. A.

H. Sunnerud, M. Karlsson, C. Xie, and P. A. Andrekson, “Polarization-mode dispersion in high-speed fiber-optic transmission systems,” J. Lightwave Technol. 20(12), (2002).
[Crossref]

Arya, V.

Bao, J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

Bergh, R. A.

Bird, G. R.

Brown, R. G.

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987-1988-1988).
[Crossref]

Capasso, F.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

Chang, C. L.

Claus, R. O.

Ctyroky, J.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Cullen, D. C.

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987-1988-1988).
[Crossref]

Culshaw, B.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw,“Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8(4), 538–544 (1990).
[Crossref]

de Man, S.

A. Petrušis, J. H. Rector, K. Smith, S. de Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibers,” J. Micromech. Microeng. 19(4), 047001 (2009).
[Crossref]

Dickey, M. D.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

Djurišic, A. B.

Elazar, J. M.

Feth, J. R.

Giles, I. P.

M. N. Zervas and I. P. Giles, “Optical fiber surface plasmon wave polarizers with enhanced performance,” Electron. Lett. 25(5), 321 (1989).
[Crossref]

Gopinath, J. T.

H. Sotobayashi, J. T. Gopinath, H. M. Shen, J. W. Sickler, P. T. Rakich, and E. P. Ippen, “Supercontinuum generation and its applications,” Proc. SPIE 6014, 60140T (2005), doi:.
[Crossref]

Hart, T.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw,“Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8(4), 538–544 (1990).
[Crossref]

Homola, J.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Iannuzzi, D.

A. Petrušis, J. H. Rector, K. Smith, S. de Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibers,” J. Micromech. Microeng. 19(4), 047001 (2009).
[Crossref]

Ippen, E. P.

H. Sotobayashi, J. T. Gopinath, H. M. Shen, J. W. Sickler, P. T. Rakich, and E. P. Ippen, “Supercontinuum generation and its applications,” Proc. SPIE 6014, 60140T (2005), doi:.
[Crossref]

Jenkins, M. W.

H. Wang, M. W. Jenkins, and A. M. Rollins, “A combined multiple-SLED broadband light source at 1300 nm for high resolution optical coherence tomography,” Opt. Commun. 281(7), 1896–1900 (2008).
[Crossref]

Johnstone, W.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw,“Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8(4), 538–544 (1990).
[Crossref]

Karlsson, M.

H. Sunnerud, M. Karlsson, C. Xie, and P. A. Andrekson, “Polarization-mode dispersion in high-speed fiber-optic transmission systems,” J. Lightwave Technol. 20(12), (2002).
[Crossref]

Lefevre, H. C.

Lowe, C. R.

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987-1988-1988).
[Crossref]

Majewski, M. L.

Manikova, Z.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Murphy, K. A.

Nasta, M. H.

Parrish, M.

Petrušis, A.

A. Petrušis, J. H. Rector, K. Smith, S. de Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibers,” J. Micromech. Microeng. 19(4), 047001 (2009).
[Crossref]

Piliarik, M.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Rakic, A. D.

Rakich, P. T.

H. Sotobayashi, J. T. Gopinath, H. M. Shen, J. W. Sickler, P. T. Rakich, and E. P. Ippen, “Supercontinuum generation and its applications,” Proc. SPIE 6014, 60140T (2005), doi:.
[Crossref]

Rector, J. H.

A. Petrušis, J. H. Rector, K. Smith, S. de Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibers,” J. Micromech. Microeng. 19(4), 047001 (2009).
[Crossref]

Rollins, A. M.

H. Wang, M. W. Jenkins, and A. M. Rollins, “A combined multiple-SLED broadband light source at 1300 nm for high resolution optical coherence tomography,” Opt. Commun. 281(7), 1896–1900 (2008).
[Crossref]

Shaw, H. J.

Shen, H. M.

H. Sotobayashi, J. T. Gopinath, H. M. Shen, J. W. Sickler, P. T. Rakich, and E. P. Ippen, “Supercontinuum generation and its applications,” Proc. SPIE 6014, 60140T (2005), doi:.
[Crossref]

Sickler, J. W.

H. Sotobayashi, J. T. Gopinath, H. M. Shen, J. W. Sickler, P. T. Rakich, and E. P. Ippen, “Supercontinuum generation and its applications,” Proc. SPIE 6014, 60140T (2005), doi:.
[Crossref]

Smith, K.

A. Petrušis, J. H. Rector, K. Smith, S. de Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibers,” J. Micromech. Microeng. 19(4), 047001 (2009).
[Crossref]

Smythe, E. J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

Sotobayashi, H.

H. Sotobayashi, J. T. Gopinath, H. M. Shen, J. W. Sickler, P. T. Rakich, and E. P. Ippen, “Supercontinuum generation and its applications,” Proc. SPIE 6014, 60140T (2005), doi:.
[Crossref]

Stewart, G.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw,“Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8(4), 538–544 (1990).
[Crossref]

Su, H. C.

H. C. Su and L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photon. Technol. Lett. 15(10), 1357–1359 (2003).
[Crossref]

Sunnerud, H.

H. Sunnerud, M. Karlsson, C. Xie, and P. A. Andrekson, “Polarization-mode dispersion in high-speed fiber-optic transmission systems,” J. Lightwave Technol. 20(12), (2002).
[Crossref]

Wang, A.

Wang, H.

H. Wang, M. W. Jenkins, and A. M. Rollins, “A combined multiple-SLED broadband light source at 1300 nm for high resolution optical coherence tomography,” Opt. Commun. 281(7), 1896–1900 (2008).
[Crossref]

Wang, L. A.

H. C. Su and L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photon. Technol. Lett. 15(10), 1357–1359 (2003).
[Crossref]

Whitesides, G. M.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

Xie, C.

H. Sunnerud, M. Karlsson, C. Xie, and P. A. Andrekson, “Polarization-mode dispersion in high-speed fiber-optic transmission systems,” J. Lightwave Technol. 20(12), (2002).
[Crossref]

Zervas, M. N.

M. N. Zervas and I. P. Giles, “Optical fiber surface plasmon wave polarizers with enhanced performance,” Electron. Lett. 25(5), 321 (1989).
[Crossref]

Appl. Opt. (1)

Biosensors (1)

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987-1988-1988).
[Crossref]

Electron. Lett. (1)

M. N. Zervas and I. P. Giles, “Optical fiber surface plasmon wave polarizers with enhanced performance,” Electron. Lett. 25(5), 321 (1989).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. C. Su and L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photon. Technol. Lett. 15(10), 1357–1359 (2003).
[Crossref]

J. Lightwave Technol. (2)

H. Sunnerud, M. Karlsson, C. Xie, and P. A. Andrekson, “Polarization-mode dispersion in high-speed fiber-optic transmission systems,” J. Lightwave Technol. 20(12), (2002).
[Crossref]

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw,“Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8(4), 538–544 (1990).
[Crossref]

J. Micromech. Microeng. (1)

A. Petrušis, J. H. Rector, K. Smith, S. de Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibers,” J. Micromech. Microeng. 19(4), 047001 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

Nano Lett. (1)

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

H. Wang, M. W. Jenkins, and A. M. Rollins, “A combined multiple-SLED broadband light source at 1300 nm for high resolution optical coherence tomography,” Opt. Commun. 281(7), 1896–1900 (2008).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (1)

H. Sotobayashi, J. T. Gopinath, H. M. Shen, J. W. Sickler, P. T. Rakich, and E. P. Ippen, “Supercontinuum generation and its applications,” Proc. SPIE 6014, 60140T (2005), doi:.
[Crossref]

Sens. Actuators B Chem. (1)

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Other (1)

http://www.nktphotonics.com/side5228.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Nano-grid polarizer with Au grating on the optical fiber tip.
Fig. 2
Fig. 2 Simulation results for transmission spectra of Au nano-gird polarizer when (a) Au nano-grid thickness is varied while grating period and fill factor are assumed as 200nm and 0.5. (b) Grating period is varied while Au nano-grid thickness and fill factor are assumed as 100nm and 0.5. (c) The filled factor is varied while Au nano-grid thickness and period are assumed as 100nm and 200nm.
Fig. 3
Fig. 3 Fabrication process of nano-grid polarizer with Au grating on the optical fiber tip.
Fig. 4
Fig. 4 Scanning electron micrograph of fiber tip nano-grid polarizer. (a) overview of the optical fiber end face, and (b) Au nano-grid with thickness d=100nm, period Λ=200nm and fill factor ~0.5.
Fig. 5
Fig. 5 (a) Measured extinction ratio of the fabricated element at different wavelengths. (b) The power throughput (insertion loss) of the element.

Metrics