Abstract

Even with intensive research, air-stable blue light emission from silicon nanocrystals (Si-ncs) at room temperature still remains a challenge. We show that stable and blue-luminescent Si-ncs can be produced by laser-generated plasma (nanosecond-pulsed excimer laser) confined in water. These Si-ncs exhibit quantum confinement effect due to their size and are produced with an environmentally compatible process. The effect of aging for several weeks in water and air on blue Si-ncs emission properties is compared. The oxide shell around the nanocrystalline core formed during laser processing in water offers the required conditions for the confinement of excitons that allow for stable (in either air or water) blue photoluminescence at room temperature.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Blue-green luminescent silicon nanocrystals fabricated by nanosecond pulsed laser ablation in dimethyl sulfoxide

N. Mansour, A. Momeni, R. Karimzadeh, and M. Amini
Opt. Mater. Express 2(6) 740-748 (2012)

Laser ablation of silicon in water with nanosecond and femtosecond pulses

Jun Ren, Michael Kelly, and Lambertus Hesselink
Opt. Lett. 30(13) 1740-1742 (2005)

Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids

Turkka Salminen, Johnny Dahl, Marjukka Tuominen, Pekka Laukkanen, Eero Arola, and Tapio Niemi
Opt. Mater. Express 2(6) 799-813 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1049 (1990).
    [Crossref]
  2. Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, “Light Emission in Silicon: From Physics to Devices,” Nature London 378, 258–262 (1995)
    [Crossref]
  3. K. Sato and M. T. Swihart, “Propionic-Acid-Terminated Silicon Nanoparticles: Synthesis and Optical Characterization,” Chem. Mater. 18, 4083–4088 (2006),
    [Crossref]
  4. X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, “Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach,” Nanotechnology 19, 245603–245608 (2008).
    [Crossref] [PubMed]
  5. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82, 197–200 (1999).
    [Crossref]
  6. X. D. Pi, L. Mangolini, S. A. Campbell, and U. Kortshagen, “Room-temperature atmospheric oxidation of Si nanocrystals after HF etching,” Phys. Rev. B 75, 085423 (2007).
    [Crossref]
  7. T. Cheung, Pulsed Laser Deposition of Thin Films ed. D. B. Chrisey and G. K. Hubler (Wiley, New York, 1994), Chap. 1.
  8. P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanrtkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58, 238–241 (1987).
    [Crossref] [PubMed]
  9. I. Levchenko, K. Ostrikov, M. Keidar, and S. Xu, “Deterministic nanoassembly: Neutral or plasma route?,” Appl. Phys. Lett. 89, 033109–033112 (2006)
    [Crossref]
  10. V. Švrcek, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett. 89, 213113 (2006).
    [Crossref]
  11. A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, “Optical Emission of Silicon nanoclusters,” J. Amer. Chem. Soc. 125, 2786 (2003).
    [Crossref]
  12. Y. Kanemitsu and S. Okamoto, “Phonon structures and Stokes shift in resonantly excited luminescence of silicon nanocrystals,” Phys. Rev. B 58, 9652–9655 (1998).
    [Crossref]
  13. J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974), p. 159.
  14. M. C. Rossi, S. Salvatori, F. Galluzzi, and G. Conte. “Laser-induced nanocrystalline silicon formation in a-SiO matrices,” Mater. Sci. Eng. B 69–70, 299–302. (2000).
    [Crossref]
  15. V. A. Volodin, M. D. Efremov, and A. G. Cherkov, “Raman investigation of the electron-phonon interaction in n-type silicon nanocrystals,” Phys. Solid State 50, 962–965 (2008).
    [Crossref]
  16. V. Švrcek, T. Sasaki, R. Katoh, T. Shimizu, and N. Koshizaki, “Aging effect on blue luminescent silicon nanocrystals preparedby pulsed laser ablation of silicon wafer in de-ionized water,” Appl. Phys. B 94, 133–139 (2008).
    [Crossref]
  17. J. Valenta, A. Fucikova, I. Pelant, K. Kusová, K. Dohnalová, A. Aleknavicius, O. Cibulka, A. Fojtík, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” New J. Phys. 10, 073022–073028 (2008).
    [Crossref]
  18. M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Alwater, “Size dependent electron-hole exchange splitting in Si nanocrystals,” Appl. Phys. Lett. 76, 351–354 (2000).
    [Crossref]
  19. X. L. Zheng, W. Wang, and H. C. Chen, “Anomalous temperature dependencies of photoluminescence for visible-light-emitting porous Si,” Appl. Phys. Lett. 60, 986–989 (1992).
    [Crossref]
  20. S. Sinha, S. Banerjee, and B. M. Arora, “Photoluminescence-excitation spectroscopy of porous silicon,” Phys. Rev. B 49, 5706–5709 (1994).
    [Crossref]
  21. G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62,15942–15951 (2000).
    [Crossref]
  22. A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “Si→SiO2 transformation: Interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–216 (1987).
    [Crossref] [PubMed]
  23. F. Herman and R. V. Kasowski, “Electronic structure of defects at Si/SiO2 interfaces,” J. Vac. Sci. Technol. 19, 395–401 (1981).
    [Crossref]
  24. D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon Nanocrystals with Ensemble Quantum Yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
    [Crossref]
  25. K. S. Zhuravlev, A. M. Gilinsky, and A. Y. Kobitsky, “Mechanism of photoluminescence of Si nanocrystals fabricated in a SiO2 matrix,” Appl. Phys. Lett. 73, 2962 (1998).
    [Crossref]
  26. C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82, 1595 (2003).
    [Crossref]
  27. D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett. 64, 214 (1994).
    [Crossref]
  28. M. Bertino, A. Corazza, M. Martini, A. Mervic, and G. Spinolo, “The 2.7 eV photoluminescence band in high-purity synthetic silica,” J. Phys.: Condens. Matter 6, 6345–6352 (1994).
    [Crossref]

2008 (4)

X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, “Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach,” Nanotechnology 19, 245603–245608 (2008).
[Crossref] [PubMed]

V. A. Volodin, M. D. Efremov, and A. G. Cherkov, “Raman investigation of the electron-phonon interaction in n-type silicon nanocrystals,” Phys. Solid State 50, 962–965 (2008).
[Crossref]

V. Švrcek, T. Sasaki, R. Katoh, T. Shimizu, and N. Koshizaki, “Aging effect on blue luminescent silicon nanocrystals preparedby pulsed laser ablation of silicon wafer in de-ionized water,” Appl. Phys. B 94, 133–139 (2008).
[Crossref]

J. Valenta, A. Fucikova, I. Pelant, K. Kusová, K. Dohnalová, A. Aleknavicius, O. Cibulka, A. Fojtík, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” New J. Phys. 10, 073022–073028 (2008).
[Crossref]

2007 (1)

X. D. Pi, L. Mangolini, S. A. Campbell, and U. Kortshagen, “Room-temperature atmospheric oxidation of Si nanocrystals after HF etching,” Phys. Rev. B 75, 085423 (2007).
[Crossref]

2006 (4)

K. Sato and M. T. Swihart, “Propionic-Acid-Terminated Silicon Nanoparticles: Synthesis and Optical Characterization,” Chem. Mater. 18, 4083–4088 (2006),
[Crossref]

I. Levchenko, K. Ostrikov, M. Keidar, and S. Xu, “Deterministic nanoassembly: Neutral or plasma route?,” Appl. Phys. Lett. 89, 033109–033112 (2006)
[Crossref]

V. Švrcek, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett. 89, 213113 (2006).
[Crossref]

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon Nanocrystals with Ensemble Quantum Yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
[Crossref]

2003 (2)

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82, 1595 (2003).
[Crossref]

A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, “Optical Emission of Silicon nanoclusters,” J. Amer. Chem. Soc. 125, 2786 (2003).
[Crossref]

2000 (3)

M. C. Rossi, S. Salvatori, F. Galluzzi, and G. Conte. “Laser-induced nanocrystalline silicon formation in a-SiO matrices,” Mater. Sci. Eng. B 69–70, 299–302. (2000).
[Crossref]

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Alwater, “Size dependent electron-hole exchange splitting in Si nanocrystals,” Appl. Phys. Lett. 76, 351–354 (2000).
[Crossref]

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62,15942–15951 (2000).
[Crossref]

1999 (1)

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82, 197–200 (1999).
[Crossref]

1998 (2)

Y. Kanemitsu and S. Okamoto, “Phonon structures and Stokes shift in resonantly excited luminescence of silicon nanocrystals,” Phys. Rev. B 58, 9652–9655 (1998).
[Crossref]

K. S. Zhuravlev, A. M. Gilinsky, and A. Y. Kobitsky, “Mechanism of photoluminescence of Si nanocrystals fabricated in a SiO2 matrix,” Appl. Phys. Lett. 73, 2962 (1998).
[Crossref]

1995 (1)

Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, “Light Emission in Silicon: From Physics to Devices,” Nature London 378, 258–262 (1995)
[Crossref]

1994 (3)

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett. 64, 214 (1994).
[Crossref]

M. Bertino, A. Corazza, M. Martini, A. Mervic, and G. Spinolo, “The 2.7 eV photoluminescence band in high-purity synthetic silica,” J. Phys.: Condens. Matter 6, 6345–6352 (1994).
[Crossref]

S. Sinha, S. Banerjee, and B. M. Arora, “Photoluminescence-excitation spectroscopy of porous silicon,” Phys. Rev. B 49, 5706–5709 (1994).
[Crossref]

1992 (1)

X. L. Zheng, W. Wang, and H. C. Chen, “Anomalous temperature dependencies of photoluminescence for visible-light-emitting porous Si,” Appl. Phys. Lett. 60, 986–989 (1992).
[Crossref]

1990 (1)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1049 (1990).
[Crossref]

1987 (2)

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanrtkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58, 238–241 (1987).
[Crossref] [PubMed]

A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “Si→SiO2 transformation: Interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–216 (1987).
[Crossref] [PubMed]

1981 (1)

F. Herman and R. V. Kasowski, “Electronic structure of defects at Si/SiO2 interfaces,” J. Vac. Sci. Technol. 19, 395–401 (1981).
[Crossref]

Aleknavicius, A.

J. Valenta, A. Fucikova, I. Pelant, K. Kusová, K. Dohnalová, A. Aleknavicius, O. Cibulka, A. Fojtík, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” New J. Phys. 10, 073022–073028 (2008).
[Crossref]

Allan, G.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82, 197–200 (1999).
[Crossref]

Alwater, H. A.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Alwater, “Size dependent electron-hole exchange splitting in Si nanocrystals,” Appl. Phys. Lett. 76, 351–354 (2000).
[Crossref]

Arora, B. M.

S. Sinha, S. Banerjee, and B. M. Arora, “Photoluminescence-excitation spectroscopy of porous silicon,” Phys. Rev. B 49, 5706–5709 (1994).
[Crossref]

Banerjee, S.

S. Sinha, S. Banerjee, and B. M. Arora, “Photoluminescence-excitation spectroscopy of porous silicon,” Phys. Rev. B 49, 5706–5709 (1994).
[Crossref]

Baribeau, J.-M.

Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, “Light Emission in Silicon: From Physics to Devices,” Nature London 378, 258–262 (1995)
[Crossref]

Bertino, M.

M. Bertino, A. Corazza, M. Martini, A. Mervic, and G. Spinolo, “The 2.7 eV photoluminescence band in high-purity synthetic silica,” J. Phys.: Condens. Matter 6, 6345–6352 (1994).
[Crossref]

Bevk, J.

A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “Si→SiO2 transformation: Interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–216 (1987).
[Crossref] [PubMed]

Bhide, V. G.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanrtkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58, 238–241 (1987).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Alwater, “Size dependent electron-hole exchange splitting in Si nanocrystals,” Appl. Phys. Lett. 76, 351–354 (2000).
[Crossref]

Campbell, S. A.

X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, “Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach,” Nanotechnology 19, 245603–245608 (2008).
[Crossref] [PubMed]

X. D. Pi, L. Mangolini, S. A. Campbell, and U. Kortshagen, “Room-temperature atmospheric oxidation of Si nanocrystals after HF etching,” Phys. Rev. B 75, 085423 (2007).
[Crossref]

Canham, L. T.

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1049 (1990).
[Crossref]

Carter, C. B.

X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, “Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach,” Nanotechnology 19, 245603–245608 (2008).
[Crossref] [PubMed]

Cazzanelli, M.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82, 1595 (2003).
[Crossref]

Chen, H. C.

X. L. Zheng, W. Wang, and H. C. Chen, “Anomalous temperature dependencies of photoluminescence for visible-light-emitting porous Si,” Appl. Phys. Lett. 60, 986–989 (1992).
[Crossref]

Cherkov, A. G.

V. A. Volodin, M. D. Efremov, and A. G. Cherkov, “Raman investigation of the electron-phonon interaction in n-type silicon nanocrystals,” Phys. Solid State 50, 962–965 (2008).
[Crossref]

Cheung, T.

T. Cheung, Pulsed Laser Deposition of Thin Films ed. D. B. Chrisey and G. K. Hubler (Wiley, New York, 1994), Chap. 1.

Cibulka, O.

J. Valenta, A. Fucikova, I. Pelant, K. Kusová, K. Dohnalová, A. Aleknavicius, O. Cibulka, A. Fojtík, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” New J. Phys. 10, 073022–073028 (2008).
[Crossref]

Conte, G.

M. C. Rossi, S. Salvatori, F. Galluzzi, and G. Conte. “Laser-induced nanocrystalline silicon formation in a-SiO matrices,” Mater. Sci. Eng. B 69–70, 299–302. (2000).
[Crossref]

Corazza, A.

M. Bertino, A. Corazza, M. Martini, A. Mervic, and G. Spinolo, “The 2.7 eV photoluminescence band in high-purity synthetic silica,” J. Phys.: Condens. Matter 6, 6345–6352 (1994).
[Crossref]

Delerue, C.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82, 197–200 (1999).
[Crossref]

Dohnalová, K.

J. Valenta, A. Fucikova, I. Pelant, K. Kusová, K. Dohnalová, A. Aleknavicius, O. Cibulka, A. Fojtík, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” New J. Phys. 10, 073022–073028 (2008).
[Crossref]

Efremov, M. D.

V. A. Volodin, M. D. Efremov, and A. G. Cherkov, “Raman investigation of the electron-phonon interaction in n-type silicon nanocrystals,” Phys. Solid State 50, 962–965 (2008).
[Crossref]

Fauchet, P. M.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82, 197–200 (1999).
[Crossref]

Ferre, R.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82, 1595 (2003).
[Crossref]

Fojtík, A.

J. Valenta, A. Fucikova, I. Pelant, K. Kusová, K. Dohnalová, A. Aleknavicius, O. Cibulka, A. Fojtík, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” New J. Phys. 10, 073022–073028 (2008).
[Crossref]

Fucikova, A.

J. Valenta, A. Fucikova, I. Pelant, K. Kusová, K. Dohnalová, A. Aleknavicius, O. Cibulka, A. Fojtík, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” New J. Phys. 10, 073022–073028 (2008).
[Crossref]

Galli, G.

A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, “Optical Emission of Silicon nanoclusters,” J. Amer. Chem. Soc. 125, 2786 (2003).
[Crossref]

Galluzzi, F.

M. C. Rossi, S. Salvatori, F. Galluzzi, and G. Conte. “Laser-induced nanocrystalline silicon formation in a-SiO matrices,” Mater. Sci. Eng. B 69–70, 299–302. (2000).
[Crossref]

Garcia, C.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82, 1595 (2003).
[Crossref]

Garrido, B.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82, 1595 (2003).
[Crossref]

Ghaisas, S. V.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanrtkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58, 238–241 (1987).
[Crossref] [PubMed]

Gilinsky, A. M.

K. S. Zhuravlev, A. M. Gilinsky, and A. Y. Kobitsky, “Mechanism of photoluminescence of Si nanocrystals fabricated in a SiO2 matrix,” Appl. Phys. Lett. 73, 2962 (1998).
[Crossref]

Grossman, J. C.

A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, “Optical Emission of Silicon nanoclusters,” J. Amer. Chem. Soc. 125, 2786 (2003).
[Crossref]

Guillois, O.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62,15942–15951 (2000).
[Crossref]

Herman, F.

F. Herman and R. V. Kasowski, “Electronic structure of defects at Si/SiO2 interfaces,” J. Vac. Sci. Technol. 19, 395–401 (1981).
[Crossref]

Huisken, F.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62,15942–15951 (2000).
[Crossref]

Jorne, J.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82, 197–200 (1999).
[Crossref]

Jurbergs, D.

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon Nanocrystals with Ensemble Quantum Yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
[Crossref]

Kada, G.

J. Valenta, A. Fucikova, I. Pelant, K. Kusová, K. Dohnalová, A. Aleknavicius, O. Cibulka, A. Fojtík, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” New J. Phys. 10, 073022–073028 (2008).
[Crossref]

Kanemitsu, Y.

Y. Kanemitsu and S. Okamoto, “Phonon structures and Stokes shift in resonantly excited luminescence of silicon nanocrystals,” Phys. Rev. B 58, 9652–9655 (1998).
[Crossref]

Kanrtkar, S. M.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanrtkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58, 238–241 (1987).
[Crossref] [PubMed]

Kasowski, R. V.

F. Herman and R. V. Kasowski, “Electronic structure of defects at Si/SiO2 interfaces,” J. Vac. Sci. Technol. 19, 395–401 (1981).
[Crossref]

Katoh, R.

V. Švrcek, T. Sasaki, R. Katoh, T. Shimizu, and N. Koshizaki, “Aging effect on blue luminescent silicon nanocrystals preparedby pulsed laser ablation of silicon wafer in de-ionized water,” Appl. Phys. B 94, 133–139 (2008).
[Crossref]

Keidar, M.

I. Levchenko, K. Ostrikov, M. Keidar, and S. Xu, “Deterministic nanoassembly: Neutral or plasma route?,” Appl. Phys. Lett. 89, 033109–033112 (2006)
[Crossref]

Kik, P. G.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Alwater, “Size dependent electron-hole exchange splitting in Si nanocrystals,” Appl. Phys. Lett. 76, 351–354 (2000).
[Crossref]

Kobitsky, A. Y.

K. S. Zhuravlev, A. M. Gilinsky, and A. Y. Kobitsky, “Mechanism of photoluminescence of Si nanocrystals fabricated in a SiO2 matrix,” Appl. Phys. Lett. 73, 2962 (1998).
[Crossref]

Koch, F.

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett. 64, 214 (1994).
[Crossref]

Kohn, B.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62,15942–15951 (2000).
[Crossref]

Kortshagen, U.

X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, “Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach,” Nanotechnology 19, 245603–245608 (2008).
[Crossref] [PubMed]

X. D. Pi, L. Mangolini, S. A. Campbell, and U. Kortshagen, “Room-temperature atmospheric oxidation of Si nanocrystals after HF etching,” Phys. Rev. B 75, 085423 (2007).
[Crossref]

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon Nanocrystals with Ensemble Quantum Yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
[Crossref]

Koshizaki, N.

V. Švrcek, T. Sasaki, R. Katoh, T. Shimizu, and N. Koshizaki, “Aging effect on blue luminescent silicon nanocrystals preparedby pulsed laser ablation of silicon wafer in de-ionized water,” Appl. Phys. B 94, 133–139 (2008).
[Crossref]

V. Švrcek, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett. 89, 213113 (2006).
[Crossref]

Kovalev, D. I.

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett. 64, 214 (1994).
[Crossref]

Kulkarni, S. A.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanrtkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58, 238–241 (1987).
[Crossref] [PubMed]

Kulkarni, S. K.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanrtkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58, 238–241 (1987).
[Crossref] [PubMed]

Kusová, K.

J. Valenta, A. Fucikova, I. Pelant, K. Kusová, K. Dohnalová, A. Aleknavicius, O. Cibulka, A. Fojtík, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” New J. Phys. 10, 073022–073028 (2008).
[Crossref]

Ledoux, G.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62,15942–15951 (2000).
[Crossref]

Levchenko, I.

I. Levchenko, K. Ostrikov, M. Keidar, and S. Xu, “Deterministic nanoassembly: Neutral or plasma route?,” Appl. Phys. Lett. 89, 033109–033112 (2006)
[Crossref]

Liptak, R. W.

X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, “Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach,” Nanotechnology 19, 245603–245608 (2008).
[Crossref] [PubMed]

Lockwood, D. J.

Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, “Light Emission in Silicon: From Physics to Devices,” Nature London 378, 258–262 (1995)
[Crossref]

Lu, Z. H.

Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, “Light Emission in Silicon: From Physics to Devices,” Nature London 378, 258–262 (1995)
[Crossref]

Mangolini, L.

X. D. Pi, L. Mangolini, S. A. Campbell, and U. Kortshagen, “Room-temperature atmospheric oxidation of Si nanocrystals after HF etching,” Phys. Rev. B 75, 085423 (2007).
[Crossref]

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon Nanocrystals with Ensemble Quantum Yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
[Crossref]

Martini, M.

M. Bertino, A. Corazza, M. Martini, A. Mervic, and G. Spinolo, “The 2.7 eV photoluminescence band in high-purity synthetic silica,” J. Phys.: Condens. Matter 6, 6345–6352 (1994).
[Crossref]

Mervic, A.

M. Bertino, A. Corazza, M. Martini, A. Mervic, and G. Spinolo, “The 2.7 eV photoluminescence band in high-purity synthetic silica,” J. Phys.: Condens. Matter 6, 6345–6352 (1994).
[Crossref]

Min, K. S.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Alwater, “Size dependent electron-hole exchange splitting in Si nanocrystals,” Appl. Phys. Lett. 76, 351–354 (2000).
[Crossref]

Morante, J. R.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82, 1595 (2003).
[Crossref]

Moreno, J. A.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82, 1595 (2003).
[Crossref]

Muschik, T.

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett. 64, 214 (1994).
[Crossref]

Nowak, J. D.

X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, “Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach,” Nanotechnology 19, 245603–245608 (2008).
[Crossref] [PubMed]

Ogale, S. B.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanrtkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58, 238–241 (1987).
[Crossref] [PubMed]

Okamoto, S.

Y. Kanemitsu and S. Okamoto, “Phonon structures and Stokes shift in resonantly excited luminescence of silicon nanocrystals,” Phys. Rev. B 58, 9652–9655 (1998).
[Crossref]

Ostrikov, K.

I. Levchenko, K. Ostrikov, M. Keidar, and S. Xu, “Deterministic nanoassembly: Neutral or plasma route?,” Appl. Phys. Lett. 89, 033109–033112 (2006)
[Crossref]

Ourmazd, A.

A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “Si→SiO2 transformation: Interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–216 (1987).
[Crossref] [PubMed]

Paillard, V.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62,15942–15951 (2000).
[Crossref]

Patil, P. P.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanrtkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58, 238–241 (1987).
[Crossref] [PubMed]

Pavesi, L.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82, 1595 (2003).
[Crossref]

Pelant, I.

J. Valenta, A. Fucikova, I. Pelant, K. Kusová, K. Dohnalová, A. Aleknavicius, O. Cibulka, A. Fojtík, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” New J. Phys. 10, 073022–073028 (2008).
[Crossref]

Pellegrino, P.

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82, 1595 (2003).
[Crossref]

Petrovakoch, V.

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett. 64, 214 (1994).
[Crossref]

Phase, D. M.

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanrtkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58, 238–241 (1987).
[Crossref] [PubMed]

Pi, X. D.

X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, “Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach,” Nanotechnology 19, 245603–245608 (2008).
[Crossref] [PubMed]

X. D. Pi, L. Mangolini, S. A. Campbell, and U. Kortshagen, “Room-temperature atmospheric oxidation of Si nanocrystals after HF etching,” Phys. Rev. B 75, 085423 (2007).
[Crossref]

Polman, A.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Alwater, “Size dependent electron-hole exchange splitting in Si nanocrystals,” Appl. Phys. Lett. 76, 351–354 (2000).
[Crossref]

Porterat, D.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62,15942–15951 (2000).
[Crossref]

Puzder, A.

A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, “Optical Emission of Silicon nanoclusters,” J. Amer. Chem. Soc. 125, 2786 (2003).
[Crossref]

Rentschler, J. A.

A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “Si→SiO2 transformation: Interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–216 (1987).
[Crossref] [PubMed]

Reynaud, C.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62,15942–15951 (2000).
[Crossref]

Rogojina, E.

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon Nanocrystals with Ensemble Quantum Yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
[Crossref]

Rossi, M. C.

M. C. Rossi, S. Salvatori, F. Galluzzi, and G. Conte. “Laser-induced nanocrystalline silicon formation in a-SiO matrices,” Mater. Sci. Eng. B 69–70, 299–302. (2000).
[Crossref]

Salvatori, S.

M. C. Rossi, S. Salvatori, F. Galluzzi, and G. Conte. “Laser-induced nanocrystalline silicon formation in a-SiO matrices,” Mater. Sci. Eng. B 69–70, 299–302. (2000).
[Crossref]

Sasaki, T.

V. Švrcek, T. Sasaki, R. Katoh, T. Shimizu, and N. Koshizaki, “Aging effect on blue luminescent silicon nanocrystals preparedby pulsed laser ablation of silicon wafer in de-ionized water,” Appl. Phys. B 94, 133–139 (2008).
[Crossref]

V. Švrcek, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett. 89, 213113 (2006).
[Crossref]

Sato, K.

K. Sato and M. T. Swihart, “Propionic-Acid-Terminated Silicon Nanoparticles: Synthesis and Optical Characterization,” Chem. Mater. 18, 4083–4088 (2006),
[Crossref]

Shimizu, T.

V. Švrcek, T. Sasaki, R. Katoh, T. Shimizu, and N. Koshizaki, “Aging effect on blue luminescent silicon nanocrystals preparedby pulsed laser ablation of silicon wafer in de-ionized water,” Appl. Phys. B 94, 133–139 (2008).
[Crossref]

Shimizu, Y.

V. Švrcek, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett. 89, 213113 (2006).
[Crossref]

Sinha, S.

S. Sinha, S. Banerjee, and B. M. Arora, “Photoluminescence-excitation spectroscopy of porous silicon,” Phys. Rev. B 49, 5706–5709 (1994).
[Crossref]

Spinolo, G.

M. Bertino, A. Corazza, M. Martini, A. Mervic, and G. Spinolo, “The 2.7 eV photoluminescence band in high-purity synthetic silica,” J. Phys.: Condens. Matter 6, 6345–6352 (1994).
[Crossref]

Švrcek, V.

V. Švrcek, T. Sasaki, R. Katoh, T. Shimizu, and N. Koshizaki, “Aging effect on blue luminescent silicon nanocrystals preparedby pulsed laser ablation of silicon wafer in de-ionized water,” Appl. Phys. B 94, 133–139 (2008).
[Crossref]

V. Švrcek, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett. 89, 213113 (2006).
[Crossref]

Swihart, M. T.

K. Sato and M. T. Swihart, “Propionic-Acid-Terminated Silicon Nanoparticles: Synthesis and Optical Characterization,” Chem. Mater. 18, 4083–4088 (2006),
[Crossref]

Tauc, J.

J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974), p. 159.

Taylor, D. W.

A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “Si→SiO2 transformation: Interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–216 (1987).
[Crossref] [PubMed]

Valenta, J.

J. Valenta, A. Fucikova, I. Pelant, K. Kusová, K. Dohnalová, A. Aleknavicius, O. Cibulka, A. Fojtík, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” New J. Phys. 10, 073022–073028 (2008).
[Crossref]

Volodin, V. A.

V. A. Volodin, M. D. Efremov, and A. G. Cherkov, “Raman investigation of the electron-phonon interaction in n-type silicon nanocrystals,” Phys. Solid State 50, 962–965 (2008).
[Crossref]

Wang, W.

X. L. Zheng, W. Wang, and H. C. Chen, “Anomalous temperature dependencies of photoluminescence for visible-light-emitting porous Si,” Appl. Phys. Lett. 60, 986–989 (1992).
[Crossref]

Wells, N. P.

X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, “Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach,” Nanotechnology 19, 245603–245608 (2008).
[Crossref] [PubMed]

Williamson, A. J.

A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, “Optical Emission of Silicon nanoclusters,” J. Amer. Chem. Soc. 125, 2786 (2003).
[Crossref]

Wolkin, M. V.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82, 197–200 (1999).
[Crossref]

Xu, S.

I. Levchenko, K. Ostrikov, M. Keidar, and S. Xu, “Deterministic nanoassembly: Neutral or plasma route?,” Appl. Phys. Lett. 89, 033109–033112 (2006)
[Crossref]

Yaroshetzkii, I. D.

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett. 64, 214 (1994).
[Crossref]

Zheng, X. L.

X. L. Zheng, W. Wang, and H. C. Chen, “Anomalous temperature dependencies of photoluminescence for visible-light-emitting porous Si,” Appl. Phys. Lett. 60, 986–989 (1992).
[Crossref]

Zhuravlev, K. S.

K. S. Zhuravlev, A. M. Gilinsky, and A. Y. Kobitsky, “Mechanism of photoluminescence of Si nanocrystals fabricated in a SiO2 matrix,” Appl. Phys. Lett. 73, 2962 (1998).
[Crossref]

Appl. Phys. B (1)

V. Švrcek, T. Sasaki, R. Katoh, T. Shimizu, and N. Koshizaki, “Aging effect on blue luminescent silicon nanocrystals preparedby pulsed laser ablation of silicon wafer in de-ionized water,” Appl. Phys. B 94, 133–139 (2008).
[Crossref]

Appl. Phys. Lett. (9)

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon Nanocrystals with Ensemble Quantum Yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
[Crossref]

K. S. Zhuravlev, A. M. Gilinsky, and A. Y. Kobitsky, “Mechanism of photoluminescence of Si nanocrystals fabricated in a SiO2 matrix,” Appl. Phys. Lett. 73, 2962 (1998).
[Crossref]

C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82, 1595 (2003).
[Crossref]

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett. 64, 214 (1994).
[Crossref]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1049 (1990).
[Crossref]

I. Levchenko, K. Ostrikov, M. Keidar, and S. Xu, “Deterministic nanoassembly: Neutral or plasma route?,” Appl. Phys. Lett. 89, 033109–033112 (2006)
[Crossref]

V. Švrcek, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water,” Appl. Phys. Lett. 89, 213113 (2006).
[Crossref]

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Alwater, “Size dependent electron-hole exchange splitting in Si nanocrystals,” Appl. Phys. Lett. 76, 351–354 (2000).
[Crossref]

X. L. Zheng, W. Wang, and H. C. Chen, “Anomalous temperature dependencies of photoluminescence for visible-light-emitting porous Si,” Appl. Phys. Lett. 60, 986–989 (1992).
[Crossref]

Chem. Mater. (1)

K. Sato and M. T. Swihart, “Propionic-Acid-Terminated Silicon Nanoparticles: Synthesis and Optical Characterization,” Chem. Mater. 18, 4083–4088 (2006),
[Crossref]

J. Amer. Chem. Soc. (1)

A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, “Optical Emission of Silicon nanoclusters,” J. Amer. Chem. Soc. 125, 2786 (2003).
[Crossref]

J. Phys.: Condens. Matter (1)

M. Bertino, A. Corazza, M. Martini, A. Mervic, and G. Spinolo, “The 2.7 eV photoluminescence band in high-purity synthetic silica,” J. Phys.: Condens. Matter 6, 6345–6352 (1994).
[Crossref]

J. Vac. Sci. Technol. (1)

F. Herman and R. V. Kasowski, “Electronic structure of defects at Si/SiO2 interfaces,” J. Vac. Sci. Technol. 19, 395–401 (1981).
[Crossref]

Mater. Sci. Eng. B (1)

M. C. Rossi, S. Salvatori, F. Galluzzi, and G. Conte. “Laser-induced nanocrystalline silicon formation in a-SiO matrices,” Mater. Sci. Eng. B 69–70, 299–302. (2000).
[Crossref]

Nanotechnology (1)

X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, “Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach,” Nanotechnology 19, 245603–245608 (2008).
[Crossref] [PubMed]

Nature London (1)

Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, “Light Emission in Silicon: From Physics to Devices,” Nature London 378, 258–262 (1995)
[Crossref]

New J. Phys. (1)

J. Valenta, A. Fucikova, I. Pelant, K. Kusová, K. Dohnalová, A. Aleknavicius, O. Cibulka, A. Fojtík, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” New J. Phys. 10, 073022–073028 (2008).
[Crossref]

Phys. Rev. B (4)

Y. Kanemitsu and S. Okamoto, “Phonon structures and Stokes shift in resonantly excited luminescence of silicon nanocrystals,” Phys. Rev. B 58, 9652–9655 (1998).
[Crossref]

X. D. Pi, L. Mangolini, S. A. Campbell, and U. Kortshagen, “Room-temperature atmospheric oxidation of Si nanocrystals after HF etching,” Phys. Rev. B 75, 085423 (2007).
[Crossref]

S. Sinha, S. Banerjee, and B. M. Arora, “Photoluminescence-excitation spectroscopy of porous silicon,” Phys. Rev. B 49, 5706–5709 (1994).
[Crossref]

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62,15942–15951 (2000).
[Crossref]

Phys. Rev. Lett. (3)

A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “Si→SiO2 transformation: Interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–216 (1987).
[Crossref] [PubMed]

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82, 197–200 (1999).
[Crossref]

P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanrtkar, S. B. Ogale, and V. G. Bhide, “Pulsed-laser-induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett. 58, 238–241 (1987).
[Crossref] [PubMed]

Phys. Solid State (1)

V. A. Volodin, M. D. Efremov, and A. G. Cherkov, “Raman investigation of the electron-phonon interaction in n-type silicon nanocrystals,” Phys. Solid State 50, 962–965 (2008).
[Crossref]

Other (2)

T. Cheung, Pulsed Laser Deposition of Thin Films ed. D. B. Chrisey and G. K. Hubler (Wiley, New York, 1994), Chap. 1.

J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974), p. 159.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Photoluminescence (PL) spectra from Si-ncs dispersed in water excited at 300 nm. Inset shows a photograph of blue light emission from silicon nanocrystals (Si-ncs) prepared by excimer laser ablation and aged in water for 4 months. Si-ncs were excited by a He:Cd laser at 325 nm. (b) Evaluation of nanocrystals optical band gap through the Tauc plot of corresponding absorption coefficient.
Fig. 2.
Fig. 2. (a) Transmition electron microscopy (TEM) image of silicon nanocrystals (Si-ncs) prepared by nanosecond excimer KrF laser ablation. (b) Raman spectra of Si-ncs aged 1 month in water and 3 months in air, dispersed at high concentration on quartz substrate (black line). Red line represents Raman peak of crystalline silicon wafer used for fabrication of nanocrystals.
Fig. 3.
Fig. 3. Photographs of blue light emission from Si-ncs dispersed on quartz at low concentration after aging: (a) in water and (b) in air for three months. Si-ncs were excited by a He:Cd laser at 325 nm at room temperature. (c) Corresponding PL spectra: black line represents Si-ncs aged in water and red line aged in air. The PL spectrum of Si-ncs aged in air taken at 4 K (blue line) is showed for comparison. Inset shows shift of PL maxima as a function of temperature for both samples.

Metrics