Abstract

Surface plasmon waves in metal-dielectric-metal structures have been theoretically examined. Because of the existence of evanescent waves that can have comparable or smaller decay rates than the propagating waves, the sign of dispersion does not necessarily indicate the sign of effective refractive index for these structures. By using the direction of energy decay to distinguish the sign of index, we have obtained different results and insights from previous reports. We also propose an approach to increase the bandwidth and decrease the loss of negative index surface plasmon propagation in the MDM structure, by simply changing the properties of its dielectric layer.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Leaky property of the Dyakonov-like wave at the surface of a semi-infinite metal-dielectric multilayered structure

Pi-Kuei Shih, Hui-Hsin Hsiao, and Hung-Chun Chang
Opt. Express 26(12) 15559-15569 (2018)

Negative refractive index in optics of metal-dielectric composites

Alexander V. Kildishev, Wenshan Cai, Uday K. Chettiar, Hsiao-Kuan Yuan, Andrey K. Sarychev, Vladimir P. Drachev, and Vladimir M. Shalaev
J. Opt. Soc. Am. B 23(3) 423-433 (2006)

Negative index modes in surface plasmon waveguides: a study of the relations between lossless and lossy cases

Yuan Zhang, Xuejin Zhang, Ting Mei, and Michael Fiddy
Opt. Express 18(12) 12213-12225 (2010)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [Crossref]
  2. J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305, 788–792 (2004).
    [Crossref] [PubMed]
  4. Vladimir. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
    [Crossref]
  5. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315, 47–49 (2007).
    [Crossref] [PubMed]
  6. Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
    [Crossref] [PubMed]
  7. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
    [Crossref]
  8. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
    [Crossref] [PubMed]
  9. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
    [Crossref]
  10. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32, 551–553 (2007).
    [Crossref] [PubMed]
  11. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455, 376–379 (2008).
    [Crossref] [PubMed]
  12. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
    [Crossref]
  13. H. Shin and S. Fan, “All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure,” Phys. Rev. Lett. 96, 073907 (2006).
    [Crossref] [PubMed]
  14. E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182, 539 (1969).
    [Crossref]
  15. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative Refraction at Visible Frequencies,” Science 316, 430–432 (2007)
    [Crossref] [PubMed]
  16. Eyal Feigenbaum, Noam Kaminski, and Meir Orenstein, “Negative Group Velocity: Is It a Negative Index Material or Fast Light?” in Tech. Dig. OSA Topical Meeting - Slow and Fast Light, (Boston, MA, 2008), SWB4; arXiv:0807.4915v1 [physics.optics].
  17. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications, Ch 2 (Springer, 2007).
  19. P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
    [Crossref]
  20. G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67, 035109 (2003).
    [Crossref]
  21. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [Crossref]
  22. Consider a lossless material. Since energy is conserved, a wave packet must not evanescently decay as it propagates. Therefore, a group of evanescent waves, each corresponding to a different (ω,β) pair, can not form a propagating wave packet.
  23. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004).
    [Crossref] [PubMed]
  24. A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett. 31, 2169–2171 (2006)
    [Crossref] [PubMed]
  25. A. K. Popov and V. M. Shalaev, “Negative-index metamaterials: second-harmonic generation, Manley- Rowe relations and parametric amplification,” Appl. Phys. B 84, 131–137 (2006).
    [Crossref]
  26. M. I. Stockman, “Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality,” Phys. Rev. Lett. 98, 177404 (2007).
    [Crossref]
  27. N. M. Litchinitser, I. R. Gabitov, A. I. Maimistov, and V. M. Shalaev, “Negative refractive index metamaterials in optics,” Emil Wolf Ed., Progress in Optics, vol. 51, Ch 1 (Elsevier, 2008).
    [Crossref]
  28. J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16, 19001–19017 (2008).
    [Crossref]

2008 (2)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16, 19001–19017 (2008).
[Crossref]

2007 (6)

M. I. Stockman, “Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality,” Phys. Rev. Lett. 98, 177404 (2007).
[Crossref]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32, 551–553 (2007).
[Crossref] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative Refraction at Visible Frequencies,” Science 316, 430–432 (2007)
[Crossref] [PubMed]

Vladimir. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

2006 (5)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

H. Shin and S. Fan, “All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure,” Phys. Rev. Lett. 96, 073907 (2006).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett. 31, 2169–2171 (2006)
[Crossref] [PubMed]

A. K. Popov and V. M. Shalaev, “Negative-index metamaterials: second-harmonic generation, Manley- Rowe relations and parametric amplification,” Appl. Phys. B 84, 131–137 (2006).
[Crossref]

2005 (2)

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

2004 (2)

2003 (2)

G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67, 035109 (2003).
[Crossref]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

2000 (1)

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

1998 (1)

1997 (1)

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
[Crossref]

1969 (1)

E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182, 539 (1969).
[Crossref]

1968 (1)

V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Atwater, H. A.

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16, 19001–19017 (2008).
[Crossref]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative Refraction at Visible Frequencies,” Science 316, 430–432 (2007)
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Brueck, S. R. J.

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Cai, W.

Chettiar, U. K.

Dionne, J. A.

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16, 19001–19017 (2008).
[Crossref]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative Refraction at Visible Frequencies,” Science 316, 430–432 (2007)
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Djurisic, A. B.

Dolling, G.

Drachev, V. P.

Economou, E. N.

E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182, 539 (1969).
[Crossref]

Elazar, J. M.

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Fainman, Y.

Fan, S.

H. Shin and S. Fan, “All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure,” Phys. Rev. Lett. 96, 073907 (2006).
[Crossref] [PubMed]

Fan, Wenjun

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Feigenbaum, Eyal

Eyal Feigenbaum, Noam Kaminski, and Meir Orenstein, “Negative Group Velocity: Is It a Negative Index Material or Fast Light?” in Tech. Dig. OSA Topical Meeting - Slow and Fast Light, (Boston, MA, 2008), SWB4; arXiv:0807.4915v1 [physics.optics].

Gabitov, I. R.

N. M. Litchinitser, I. R. Gabitov, A. I. Maimistov, and V. M. Shalaev, “Negative refractive index metamaterials in optics,” Emil Wolf Ed., Progress in Optics, vol. 51, Ch 1 (Elsevier, 2008).
[Crossref]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Kaminski, Noam

Eyal Feigenbaum, Noam Kaminski, and Meir Orenstein, “Negative Group Velocity: Is It a Negative Index Material or Fast Light?” in Tech. Dig. OSA Topical Meeting - Slow and Fast Light, (Boston, MA, 2008), SWB4; arXiv:0807.4915v1 [physics.optics].

Kildishev, A. V.

Laude, V.

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
[Crossref]

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative Refraction at Visible Frequencies,” Science 316, 430–432 (2007)
[Crossref] [PubMed]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32, 551–553 (2007).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Litchinitser, N. M.

N. M. Litchinitser, I. R. Gabitov, A. I. Maimistov, and V. M. Shalaev, “Negative refractive index metamaterials in optics,” Emil Wolf Ed., Progress in Optics, vol. 51, Ch 1 (Elsevier, 2008).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications, Ch 2 (Springer, 2007).

Maimistov, A. I.

N. M. Litchinitser, I. R. Gabitov, A. I. Maimistov, and V. M. Shalaev, “Negative refractive index metamaterials in optics,” Emil Wolf Ed., Progress in Optics, vol. 51, Ch 1 (Elsevier, 2008).
[Crossref]

Majewski, M. L.

Malloy, K. J.

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Nezhad, M.

Orenstein, Meir

Eyal Feigenbaum, Noam Kaminski, and Meir Orenstein, “Negative Group Velocity: Is It a Negative Index Material or Fast Light?” in Tech. Dig. OSA Topical Meeting - Slow and Fast Light, (Boston, MA, 2008), SWB4; arXiv:0807.4915v1 [physics.optics].

Osgood, R. M.

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Panoiu, N. C.

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Polman, A.

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16, 19001–19017 (2008).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Popov, A. K.

A. K. Popov and V. M. Shalaev, “Negative-index metamaterials: second-harmonic generation, Manley- Rowe relations and parametric amplification,” Appl. Phys. B 84, 131–137 (2006).
[Crossref]

A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett. 31, 2169–2171 (2006)
[Crossref] [PubMed]

Rakic, A. D.

Ramakrishna, S. A.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Sarychev, A. K.

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Shalaev, V. M.

A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett. 31, 2169–2171 (2006)
[Crossref] [PubMed]

A. K. Popov and V. M. Shalaev, “Negative-index metamaterials: second-harmonic generation, Manley- Rowe relations and parametric amplification,” Appl. Phys. B 84, 131–137 (2006).
[Crossref]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

N. M. Litchinitser, I. R. Gabitov, A. I. Maimistov, and V. M. Shalaev, “Negative refractive index metamaterials in optics,” Emil Wolf Ed., Progress in Optics, vol. 51, Ch 1 (Elsevier, 2008).
[Crossref]

Shalaev, Vladimir. M.

Vladimir. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Shin, H.

H. Shin and S. Fan, “All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure,” Phys. Rev. Lett. 96, 073907 (2006).
[Crossref] [PubMed]

Shvets, G.

G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67, 035109 (2003).
[Crossref]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality,” Phys. Rev. Lett. 98, 177404 (2007).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Tetz, K.

Tournois, P.

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
[Crossref]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Verhagen, E.

Veselago, V. G.

V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32, 551–553 (2007).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

Yuan, H.-K.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Zhang, Shuang

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

A. K. Popov and V. M. Shalaev, “Negative-index metamaterials: second-harmonic generation, Manley- Rowe relations and parametric amplification,” Appl. Phys. B 84, 131–137 (2006).
[Crossref]

Appl. Phys. Lett. (1)

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Nat. Photonics (1)

Vladimir. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three Dimensional Optical Metamaterial Exhibiting Negative Refractive Index,” Nature 455, 376–379 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. (1)

E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182, 539 (1969).
[Crossref]

Phys. Rev. B (2)

G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67, 035109 (2003).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Phys. Rev. Lett. (4)

M. I. Stockman, “Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality,” Phys. Rev. Lett. 98, 177404 (2007).
[Crossref]

H. Shin and S. Fan, “All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure,” Phys. Rev. Lett. 96, 073907 (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Science (4)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305, 788–792 (2004).
[Crossref] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative Refraction at Visible Frequencies,” Science 316, 430–432 (2007)
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Other (4)

Eyal Feigenbaum, Noam Kaminski, and Meir Orenstein, “Negative Group Velocity: Is It a Negative Index Material or Fast Light?” in Tech. Dig. OSA Topical Meeting - Slow and Fast Light, (Boston, MA, 2008), SWB4; arXiv:0807.4915v1 [physics.optics].

S. A. Maier, Plasmonics: Fundamentals and Applications, Ch 2 (Springer, 2007).

N. M. Litchinitser, I. R. Gabitov, A. I. Maimistov, and V. M. Shalaev, “Negative refractive index metamaterials in optics,” Emil Wolf Ed., Progress in Optics, vol. 51, Ch 1 (Elsevier, 2008).
[Crossref]

Consider a lossless material. Since energy is conserved, a wave packet must not evanescently decay as it propagates. Therefore, a group of evanescent waves, each corresponding to a different (ω,β) pair, can not form a propagating wave packet.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. A planar metal-dielectric-metal structure. d = 40 nm is used unless otherwise stated.
Fig. 2.
Fig. 2. Dispersion diagrams for a planar structure consisting of a 40 nm thick silicon nitride layer sandwiched between lossless gold half-spaces. Red and blue curves correspond to the real and imaginary parts, respectively, of β/ at each frequency 1/λ for some modes. λ is free space wavelength. Similarly, the green and yellow curves correspond to the real and imaginary parts for other modes. (a) Antisymmetric modes. (b) Symmetric modes.
Fig. 3.
Fig. 3. Schematic mode profiles of a pair of evanescent modes with β’ ≠ 0, which are time-reverse to each other under the lossless condition. The arrows indicate the directions and magnitudes of power flows, which have been integrated within each layer.
Fig. 4.
Fig. 4. Dispersion diagrams for a planar structure consisting of a 40 nm thick silicon nitride layer sandwiched between gold half-spaces, ohmic loss included. Red and blue curves correspond to the real and imaginary parts, respectively, of β/ at each frequency 1/λ for some modes. λ is free space wavelength. Similarly, the green and yellow curves correspond to the real and imaginary parts for other modes. (a) Antisymmetric modes. (b) Symmetric modes.
Fig. 5.
Fig. 5. Dispersion relations for a planar structure consisting of a 20 nm thick silicon layer sandwiched between gold half-spaces. Red and blue curves correspond to the real and imaginary parts of β/2π at each inverse wavelength 1/λ.. λ is free space wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ekSNdkSN/εSN+kAu/εAukSN/εSNkAu/εAu=0
kSN,Au=(β2k02εSN,Au)1/2

Metrics