We proposed a novel architecture for optical image encryption based on interference between two polarized wavefronts. A polarization-selective diffractive optical element is employed to generate the desired polarized wavefronts by modulating the incident polarized light beam. The encryption algorithm for this new method is simple and does not need iterative encoding. Numerical simulation is performed to demonstrate the validity of this new proposed method.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An encryption method with multiple encrypted keys based on interference principle

Chun-Hui Niu, Xiao-Ling Wang, Nai-Guang Lv, Zhe-Hai Zhou, and Xiao-Ying Li
Opt. Express 18(8) 7827-7834 (2010)

Optical image encryption based on interference

Yan Zhang and Bo Wang
Opt. Lett. 33(21) 2443-2445 (2008)


  • View by:
  • |
  • |
  • |

  1. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [Crossref] [PubMed]
  2. Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33, 2443–2445 (2008).
    [Crossref] [PubMed]
  3. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
    [Crossref] [PubMed]
  4. N. Yoshikawa, M. Itoh, and T. Yatagai, “Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography,” Opt. Lett. 23, 1483–1485 (1998).
  5. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
  6. B. Zhu, S. Liu, and Q. Ran, “Optical image encryption based on multifractional Fourier transforms,” Opt. Lett. 25, 1159–1161 (2000).
  7. S. Liu, Q. Mi, and B. Zhu, “Optical image encryption with multistage and multichannel fractional Fourier-domain filtering,” Opt. Lett. 26, 1242–1244 (2001).
  8. O. Matoba and B. Javidi, “Optical retrieval of encrypted digital holograms for secure real-time display,” Opt. Lett. 27, 321–323 (2002).
  9. J. E. Ford, F. Xu, K. Urquhart, and Y. Fainman, “Polarization-selective computer-generated holograms,” Opt. Lett. 18, 456–458 (1993).
    [Crossref] [PubMed]
  10. F. Xu, R.-C. Tyan, Y. Fainman, and J. E. Ford, “Single-substrate birefringent computer-generated holograms,” Opt. Lett. 21, 516–518 (1996).
    [Crossref] [PubMed]

2008 (1)

2002 (1)

2001 (1)

2000 (1)

1999 (1)

1998 (1)

1996 (1)

1995 (2)

1993 (1)

Bashaw, M. C.

Fainman, Y.

Ford, J. E.

Heanue, J. F.

Hesselink, L.

Itoh, M.

Javidi, B.

Liu, S.

Matoba, O.

Mi, Q.

Ran, Q.

Refregier, P.

Tyan, R.-C.

Urquhart, K.

Wang, B.

Xu, F.

Yatagai, T.

Yoshikawa, N.

Zhang, Y.

Zhu, B.

Appl. Opt. (1)

Opt. Lett. (9)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (4)

Fig. 1.
Fig. 1. Effective function of a polarization-selective DOE: PBS’s, polarizing beam splitters; M’s, mirrors.
Fig. 2.
Fig. 2. Schematic of the optical image decryption setup.
Fig. 3.
Fig. 3. (a). The original image for encryption, (b). decryption image with the matched polarization-selective DOE, and (c) the surface-relief pattern of the polarization-selective DOE.
Fig. 4.
Fig. 4. (a). Dependence of RE on wavelength, (b) Dependence of RE on deviation ratio of polarization-selective DOE surface-relief depth.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Φo =2π(no1)dλ ,
Φe =2π(ne1)dλ ,
Φo=φo+2pπ ,
Φe=φe+2 ,
φo+2p π=2π(no1)dλ ,
φe+2q π=2π(ne1)dλ .
φo+2p π+δp=2π(no1)dλ ,
φe+2q π+δq=2π(ne1)dλ ,
d=λ[φo+2pπ+δp]2π(no1) =λ[φe+2qπ++δq]2π(ne1) .
o=mn =omn exp [i2πrandmn] ,
o mn = {exp(iφo)} + {exp(iφe)} ,
exp (iφo) =Qexp (iφe) .
Qexp (iφe) 2 = Q exp (iφe) Q
exp ( i φe ) * =1,
φo =arg (Q)±arccos[abs(Q)2];
φo =arg[Qexp(iφo)] ;
R E =Σm=1NΣn=1Nrmno'mn2Σm=1NΣn=1No'mn2 ,