Abstract

A new design for a polychromatic light-emitting diode (LED) is proposed and demonstrated. LED chips of the primary colors are physically stacked on top of each other. Light emitted from each layer of the stack passes through each other, and thus is mixed naturally without additional optics. As a color-tunable device, a wide range of colors can be generated, making it suitable for display purposes. As a phosphor-free white light LED, luminous efficacy of 30 lm/watt was achieved.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs

Ji Hye Oh, Jeong Rok Oh, Hoo Keun Park, Yeon-Goog Sung, and Young Rag Do
Opt. Express 19(S3) A270-A279 (2011)

Highly-efficient, tunable green, phosphor-converted LEDs using a long-pass dichroic filter and a series of orthosilicate phosphors for tri-color white LEDs

Ji Hye Oh, Jeong Rok Oh, Hoo Keun Park, Yeon-Goog Sung, and Young Rag Do
Opt. Express 20(S1) A1-A12 (2012)

White thin-film flip-chip LEDs with uniform color temperature using laser lift-off and conformal phosphor coating technologies

Huan-Ting Lin, Ching-Ho Tien, Chen-Peng Hsu, and Ray-Hua Horng
Opt. Express 22(26) 31646-31653 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. Narendran, N. Maliyagoda, L. Deng, and R. Pysar, “Characterizing LEDs for general illumination applications: mixed-color and phosphor-based white sources,” Proc. SPIE 4445, 137–147 (2001).
    [Crossref]
  2. www.heptagon.fi
  3. W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Photonic Crystal Light-emitting Diodes Fabricated by Microsphere Lithography,” Nanotechnology 19(25), 255302 (2008).
    [Crossref] [PubMed]
  4. M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
    [Crossref]
  5. X. H. Wang, P. T. Lai, and H. W. Choi, “Laser Micro-machining of Optical Microstructures with Inclined Sidewall Profile,” J. Vac. Sci. Technol. B 27, 1048–1052 (2009).
    [Crossref]
  6. K. N. Hui, W. Y. Fu, X. H. Wang, K. K. Y. Wong, P. T. Lai, and H. W. Choi, “Geometrical Shaping of InGaN Light-emitting Diodes by Laser Micromachining,” IEEE Photon. Technol. Lett. (to be published).
  7. Y. Ohno, “Color Rendering and Luminous Efficacy of White LED Spectra,” Proc. SPIE 5530, 88–98 (2004).
    [Crossref]
  8. B. Damilano, N. Grandjean, C. Pernot, and J. Massies, “Monolithic White Light Emitting Diodes Based on InGaN/GaN Multi-Quantum Wells,” Jpn. J. Appl. Phys. 40(Part 2, No. 9A/B), L918–L920 (2001).
    [Crossref]
  9. Y. D. Qi, H. Liang, W. Tang, Z. D. Lu, and K. M. Lau, “Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 272(1-4), 333–340 (2004).
    [Crossref]
  10. C. B. Soh, W. Liu, J. H. Teng, S. Y. Chow, S. S. Ang, and S. J. Chua, “Cool White III-nitride light emitting diode based on phosphor-free Indium-rich InGaN nanostructures,” Appl. Phys. Lett. 92(26), 261909 (2008).
    [Crossref]

2009 (1)

X. H. Wang, P. T. Lai, and H. W. Choi, “Laser Micro-machining of Optical Microstructures with Inclined Sidewall Profile,” J. Vac. Sci. Technol. B 27, 1048–1052 (2009).
[Crossref]

2008 (2)

W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Photonic Crystal Light-emitting Diodes Fabricated by Microsphere Lithography,” Nanotechnology 19(25), 255302 (2008).
[Crossref] [PubMed]

C. B. Soh, W. Liu, J. H. Teng, S. Y. Chow, S. S. Ang, and S. J. Chua, “Cool White III-nitride light emitting diode based on phosphor-free Indium-rich InGaN nanostructures,” Appl. Phys. Lett. 92(26), 261909 (2008).
[Crossref]

2004 (2)

Y. D. Qi, H. Liang, W. Tang, Z. D. Lu, and K. M. Lau, “Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 272(1-4), 333–340 (2004).
[Crossref]

Y. Ohno, “Color Rendering and Luminous Efficacy of White LED Spectra,” Proc. SPIE 5530, 88–98 (2004).
[Crossref]

2001 (2)

B. Damilano, N. Grandjean, C. Pernot, and J. Massies, “Monolithic White Light Emitting Diodes Based on InGaN/GaN Multi-Quantum Wells,” Jpn. J. Appl. Phys. 40(Part 2, No. 9A/B), L918–L920 (2001).
[Crossref]

N. Narendran, N. Maliyagoda, L. Deng, and R. Pysar, “Characterizing LEDs for general illumination applications: mixed-color and phosphor-based white sources,” Proc. SPIE 4445, 137–147 (2001).
[Crossref]

1999 (1)

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Ang, S. S.

C. B. Soh, W. Liu, J. H. Teng, S. Y. Chow, S. S. Ang, and S. J. Chua, “Cool White III-nitride light emitting diode based on phosphor-free Indium-rich InGaN nanostructures,” Appl. Phys. Lett. 92(26), 261909 (2008).
[Crossref]

Carter-Coman, C.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Chen, E. I.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Choi, H. W.

X. H. Wang, P. T. Lai, and H. W. Choi, “Laser Micro-machining of Optical Microstructures with Inclined Sidewall Profile,” J. Vac. Sci. Technol. B 27, 1048–1052 (2009).
[Crossref]

W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Photonic Crystal Light-emitting Diodes Fabricated by Microsphere Lithography,” Nanotechnology 19(25), 255302 (2008).
[Crossref] [PubMed]

K. N. Hui, W. Y. Fu, X. H. Wang, K. K. Y. Wong, P. T. Lai, and H. W. Choi, “Geometrical Shaping of InGaN Light-emitting Diodes by Laser Micromachining,” IEEE Photon. Technol. Lett. (to be published).

Chow, S. Y.

C. B. Soh, W. Liu, J. H. Teng, S. Y. Chow, S. S. Ang, and S. J. Chua, “Cool White III-nitride light emitting diode based on phosphor-free Indium-rich InGaN nanostructures,” Appl. Phys. Lett. 92(26), 261909 (2008).
[Crossref]

Chua, S. J.

C. B. Soh, W. Liu, J. H. Teng, S. Y. Chow, S. S. Ang, and S. J. Chua, “Cool White III-nitride light emitting diode based on phosphor-free Indium-rich InGaN nanostructures,” Appl. Phys. Lett. 92(26), 261909 (2008).
[Crossref]

Chui, H. C.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Collins, D.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Craford, M. G.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Damilano, B.

B. Damilano, N. Grandjean, C. Pernot, and J. Massies, “Monolithic White Light Emitting Diodes Based on InGaN/GaN Multi-Quantum Wells,” Jpn. J. Appl. Phys. 40(Part 2, No. 9A/B), L918–L920 (2001).
[Crossref]

Deng, L.

N. Narendran, N. Maliyagoda, L. Deng, and R. Pysar, “Characterizing LEDs for general illumination applications: mixed-color and phosphor-based white sources,” Proc. SPIE 4445, 137–147 (2001).
[Crossref]

Fu, W. Y.

K. N. Hui, W. Y. Fu, X. H. Wang, K. K. Y. Wong, P. T. Lai, and H. W. Choi, “Geometrical Shaping of InGaN Light-emitting Diodes by Laser Micromachining,” IEEE Photon. Technol. Lett. (to be published).

Gardner, N. F.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Grandjean, N.

B. Damilano, N. Grandjean, C. Pernot, and J. Massies, “Monolithic White Light Emitting Diodes Based on InGaN/GaN Multi-Quantum Wells,” Jpn. J. Appl. Phys. 40(Part 2, No. 9A/B), L918–L920 (2001).
[Crossref]

Grillot, P.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Hofler, G. E.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Huang, J. W.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Hueschen, M.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Hui, K. N.

K. N. Hui, W. Y. Fu, X. H. Wang, K. K. Y. Wong, P. T. Lai, and H. W. Choi, “Geometrical Shaping of InGaN Light-emitting Diodes by Laser Micromachining,” IEEE Photon. Technol. Lett. (to be published).

Kish, F. A.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Kocot, C. P.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Krames, M. R.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Lai, P. T.

X. H. Wang, P. T. Lai, and H. W. Choi, “Laser Micro-machining of Optical Microstructures with Inclined Sidewall Profile,” J. Vac. Sci. Technol. B 27, 1048–1052 (2009).
[Crossref]

W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Photonic Crystal Light-emitting Diodes Fabricated by Microsphere Lithography,” Nanotechnology 19(25), 255302 (2008).
[Crossref] [PubMed]

K. N. Hui, W. Y. Fu, X. H. Wang, K. K. Y. Wong, P. T. Lai, and H. W. Choi, “Geometrical Shaping of InGaN Light-emitting Diodes by Laser Micromachining,” IEEE Photon. Technol. Lett. (to be published).

Lau, K. M.

Y. D. Qi, H. Liang, W. Tang, Z. D. Lu, and K. M. Lau, “Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 272(1-4), 333–340 (2004).
[Crossref]

Leung, C. H.

W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Photonic Crystal Light-emitting Diodes Fabricated by Microsphere Lithography,” Nanotechnology 19(25), 255302 (2008).
[Crossref] [PubMed]

Liang, H.

Y. D. Qi, H. Liang, W. Tang, Z. D. Lu, and K. M. Lau, “Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 272(1-4), 333–340 (2004).
[Crossref]

Liu, W.

C. B. Soh, W. Liu, J. H. Teng, S. Y. Chow, S. S. Ang, and S. J. Chua, “Cool White III-nitride light emitting diode based on phosphor-free Indium-rich InGaN nanostructures,” Appl. Phys. Lett. 92(26), 261909 (2008).
[Crossref]

Loh, B.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Lu, Z. D.

Y. D. Qi, H. Liang, W. Tang, Z. D. Lu, and K. M. Lau, “Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 272(1-4), 333–340 (2004).
[Crossref]

Maliyagoda, N.

N. Narendran, N. Maliyagoda, L. Deng, and R. Pysar, “Characterizing LEDs for general illumination applications: mixed-color and phosphor-based white sources,” Proc. SPIE 4445, 137–147 (2001).
[Crossref]

Massies, J.

B. Damilano, N. Grandjean, C. Pernot, and J. Massies, “Monolithic White Light Emitting Diodes Based on InGaN/GaN Multi-Quantum Wells,” Jpn. J. Appl. Phys. 40(Part 2, No. 9A/B), L918–L920 (2001).
[Crossref]

Narendran, N.

N. Narendran, N. Maliyagoda, L. Deng, and R. Pysar, “Characterizing LEDs for general illumination applications: mixed-color and phosphor-based white sources,” Proc. SPIE 4445, 137–147 (2001).
[Crossref]

Ng, W. N.

W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Photonic Crystal Light-emitting Diodes Fabricated by Microsphere Lithography,” Nanotechnology 19(25), 255302 (2008).
[Crossref] [PubMed]

Ochiai-Holcomb, M.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Ohno, Y.

Y. Ohno, “Color Rendering and Luminous Efficacy of White LED Spectra,” Proc. SPIE 5530, 88–98 (2004).
[Crossref]

Pernot, C.

B. Damilano, N. Grandjean, C. Pernot, and J. Massies, “Monolithic White Light Emitting Diodes Based on InGaN/GaN Multi-Quantum Wells,” Jpn. J. Appl. Phys. 40(Part 2, No. 9A/B), L918–L920 (2001).
[Crossref]

Posselt, J.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Pysar, R.

N. Narendran, N. Maliyagoda, L. Deng, and R. Pysar, “Characterizing LEDs for general illumination applications: mixed-color and phosphor-based white sources,” Proc. SPIE 4445, 137–147 (2001).
[Crossref]

Qi, Y. D.

Y. D. Qi, H. Liang, W. Tang, Z. D. Lu, and K. M. Lau, “Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 272(1-4), 333–340 (2004).
[Crossref]

Sasser, G.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Soh, C. B.

C. B. Soh, W. Liu, J. H. Teng, S. Y. Chow, S. S. Ang, and S. J. Chua, “Cool White III-nitride light emitting diode based on phosphor-free Indium-rich InGaN nanostructures,” Appl. Phys. Lett. 92(26), 261909 (2008).
[Crossref]

Stockman, S. A.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Tan, I. H.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Tan, T. S.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Tang, W.

Y. D. Qi, H. Liang, W. Tang, Z. D. Lu, and K. M. Lau, “Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 272(1-4), 333–340 (2004).
[Crossref]

Teng, J. H.

C. B. Soh, W. Liu, J. H. Teng, S. Y. Chow, S. S. Ang, and S. J. Chua, “Cool White III-nitride light emitting diode based on phosphor-free Indium-rich InGaN nanostructures,” Appl. Phys. Lett. 92(26), 261909 (2008).
[Crossref]

Wang, X. H.

X. H. Wang, P. T. Lai, and H. W. Choi, “Laser Micro-machining of Optical Microstructures with Inclined Sidewall Profile,” J. Vac. Sci. Technol. B 27, 1048–1052 (2009).
[Crossref]

K. N. Hui, W. Y. Fu, X. H. Wang, K. K. Y. Wong, P. T. Lai, and H. W. Choi, “Geometrical Shaping of InGaN Light-emitting Diodes by Laser Micromachining,” IEEE Photon. Technol. Lett. (to be published).

Wong, K. K. Y.

K. N. Hui, W. Y. Fu, X. H. Wang, K. K. Y. Wong, P. T. Lai, and H. W. Choi, “Geometrical Shaping of InGaN Light-emitting Diodes by Laser Micromachining,” IEEE Photon. Technol. Lett. (to be published).

Appl. Phys. Lett. (2)

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

C. B. Soh, W. Liu, J. H. Teng, S. Y. Chow, S. S. Ang, and S. J. Chua, “Cool White III-nitride light emitting diode based on phosphor-free Indium-rich InGaN nanostructures,” Appl. Phys. Lett. 92(26), 261909 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. N. Hui, W. Y. Fu, X. H. Wang, K. K. Y. Wong, P. T. Lai, and H. W. Choi, “Geometrical Shaping of InGaN Light-emitting Diodes by Laser Micromachining,” IEEE Photon. Technol. Lett. (to be published).

J. Cryst. Growth (1)

Y. D. Qi, H. Liang, W. Tang, Z. D. Lu, and K. M. Lau, “Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 272(1-4), 333–340 (2004).
[Crossref]

J. Vac. Sci. Technol. B (1)

X. H. Wang, P. T. Lai, and H. W. Choi, “Laser Micro-machining of Optical Microstructures with Inclined Sidewall Profile,” J. Vac. Sci. Technol. B 27, 1048–1052 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

B. Damilano, N. Grandjean, C. Pernot, and J. Massies, “Monolithic White Light Emitting Diodes Based on InGaN/GaN Multi-Quantum Wells,” Jpn. J. Appl. Phys. 40(Part 2, No. 9A/B), L918–L920 (2001).
[Crossref]

Nanotechnology (1)

W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Photonic Crystal Light-emitting Diodes Fabricated by Microsphere Lithography,” Nanotechnology 19(25), 255302 (2008).
[Crossref] [PubMed]

Proc. SPIE (2)

Y. Ohno, “Color Rendering and Luminous Efficacy of White LED Spectra,” Proc. SPIE 5530, 88–98 (2004).
[Crossref]

N. Narendran, N. Maliyagoda, L. Deng, and R. Pysar, “Characterizing LEDs for general illumination applications: mixed-color and phosphor-based white sources,” Proc. SPIE 4445, 137–147 (2001).
[Crossref]

Other (1)

www.heptagon.fi

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram illustrating the idea of LED chip stacking.
Fig. 2
Fig. 2 The first version of an LED stack; sidewall emissions contribute to inhomogeneous color-mixing.
Fig. 3
Fig. 3 SEM image showing an LED stack assembled with LED chips of inverted-pyramidal geometry.
Fig. 4
Fig. 4 Optical microphotographs captured from the top of (a) a stacked LED and (b) a conventional RGB LED. Boths LEDs are biased for white light emission, at a total current of 10 mA.
Fig. 5(a)-(d)
Fig. 5(a)-(d) Optical spectrum of the various colors emitted by the LED stack. Optical microphotographs of the LED are shown in the insets of the corresponding spectrum.

Tables (1)

Tables Icon

Table 1 Bias voltages (currents) for generating the optical spectrum (a) to (d) in Fig. 5.

Metrics