Abstract

Intense near-infrared luminescence of Nd3+ and Tm3+ ions in the region of 860-1550 nm were achieved in 10-15 nm wurtzite ZnO nanocrystals fabricated by a facile sol-gel process. The optical properties of Nd3+ and Tm3+ ions were investigated by using the steady-state and time-resolved laser spectroscopy. Due to the well-ordered crystal-field surroundings experienced by Nd3+ and Tm3+ ions, sharp and well resolved emission lines of Nd3+ and Tm3+ ions were identified at 4-300 K. Time-resolved luminescence and decay behaviors of the 4F3/24I11/2 transition of Nd3+ ions reveal the existence of multiple Nd3+ sites in ZnO nanocrystals.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable white upconversion luminescence from Yb3+-Tm3+-Mn2+ tri-doped perovskite nanocrystals

E. H. Song, S. Ding, M. Wu, S. Ye, Z. T. Chen, Y. Y. Ma, and Q. Y. Zhang
Opt. Mater. Express 4(6) 1186-1196 (2014)

Multiple magnification effects of Ce3+ ions on near-infrared persistent luminescence of Cr-doped LaAlO3

Yi Zhang, Rui Huang, Zhenxu Lin, Jie Song, Xiang Wang, Yanqing Guo, Chao Song, Ying Yu, and John Robertson
Opt. Mater. Express 6(3) 922-928 (2016)

Enhancing upconverted white light in Tm3+/Yb3+/Ho3+-doped GdVO4 nanocrystals via incorporation of Li+ ions

Venkataramanan Mahalingam, Rafik Naccache, Fiorenzo Vetrone, and John A. Capobianco
Opt. Express 20(1) 111-119 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. Chen, J. H. Zhang, X. M. Zhang, F. Liu, and X. J. Wang, “Optical properties of trivalent europium doped ZnO:Zn phosphor under indirect excitation of near-UV light,” Opt. Express 16(16), 11795–11801 (2008).
    [Crossref] [PubMed]
  2. Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, “Optical spectroscopy of Eu3+ doped ZnO nanocrystals,” J. Phys. Chem. C 112(3), 686–694 (2008).
    [Crossref]
  3. Y. S. Liu, W. Q. Luo, R. F. Li, and X. Y. Chen, “Spectroscopic evidence of the multiple- site structure of Eu(3+) ions incorporated in ZnO nanocrystals,” Opt. Lett. 32(5), 566–568 (2007).
    [Crossref] [PubMed]
  4. A. Ishizumi and Y. Kanemitsu, “Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method,” Appl. Phys. Lett. 86(25), 253106 (2005).
    [Crossref]
  5. X. Y. Zeng, J. L. Yuan, Z. Y. Wang, and L. Zhang, “Nanosheet-Based Microspheres of Eu3+-doped ZnO with Efficient Energy Transfer from ZnO to Eu3+ at Room temperature,” Adv. Mater. 19(24), 4510–4514 (2007).
    [Crossref]
  6. D. A. Chengelis, A. M. Yingling, P. D. Badger, C. M. Shade, and S. Petoud, “Incorporating lanthanide cations with cadmium selenide nanocrystals: a strategy to sensitize and protect Tb(III),” J. Am. Chem. Soc. 127(48), 16752–16753 (2005).
    [Crossref] [PubMed]
  7. O. E. Raola and G. F. Strouse, “Synthesis and characterization of Eu-doped cadmium selenide nanocrystals,” Nano Lett. 2(12), 1443–1447 (2002).
    [Crossref]
  8. X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
    [Crossref]
  9. A. S. Pereira, M. Peres, M. J. Soares, E. Alves, A. Neves, T. Monteiro, and T. Trindade, “Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals,” Nanotechnology 17(3), 834–839 (2006).
    [Crossref]
  10. P. A. Tanner and L. X. Yu, “Photoluminescence of ZnO:Eu3+ nanoflowers,” J. Nanosci. Nanotechnol. 8(3), 1307–1311 (2008).
    [PubMed]
  11. L. Douglas, R. Mundle, R. Konda, C. E. Bonner, A. K. Pradhan, D. R. Sahu, and J. L. Huang, “Influence of doping rate in Er3+:ZnO films on emission characteristics,” Opt. Lett. 33(8), 815–817 (2008).
    [Crossref] [PubMed]
  12. S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54 µm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76(26), 3935–3937 (2000).
    [Crossref]
  13. P. R. Diamente, M. Raudsepp, and F. C. J. M. van Veggel, “Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 µm photoluminescence,” Adv. Funct. Mater. 17(3), 363–368 (2007).
    [Crossref]
  14. G. Cao, L. K. Rabenberg, C. M. Nunn, and T. E. Mallouk, “Formation of Quantum-Size Semiconductor Particles in a Layered Metal Phosphonate Host Lattice,” Chem. Mater. 3(1), 149–156 (1991).
    [Crossref]
  15. R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
    [Crossref]

2008 (4)

2007 (4)

P. R. Diamente, M. Raudsepp, and F. C. J. M. van Veggel, “Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 µm photoluminescence,” Adv. Funct. Mater. 17(3), 363–368 (2007).
[Crossref]

R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
[Crossref]

Y. S. Liu, W. Q. Luo, R. F. Li, and X. Y. Chen, “Spectroscopic evidence of the multiple- site structure of Eu(3+) ions incorporated in ZnO nanocrystals,” Opt. Lett. 32(5), 566–568 (2007).
[Crossref] [PubMed]

X. Y. Zeng, J. L. Yuan, Z. Y. Wang, and L. Zhang, “Nanosheet-Based Microspheres of Eu3+-doped ZnO with Efficient Energy Transfer from ZnO to Eu3+ at Room temperature,” Adv. Mater. 19(24), 4510–4514 (2007).
[Crossref]

2006 (1)

A. S. Pereira, M. Peres, M. J. Soares, E. Alves, A. Neves, T. Monteiro, and T. Trindade, “Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals,” Nanotechnology 17(3), 834–839 (2006).
[Crossref]

2005 (2)

D. A. Chengelis, A. M. Yingling, P. D. Badger, C. M. Shade, and S. Petoud, “Incorporating lanthanide cations with cadmium selenide nanocrystals: a strategy to sensitize and protect Tb(III),” J. Am. Chem. Soc. 127(48), 16752–16753 (2005).
[Crossref] [PubMed]

A. Ishizumi and Y. Kanemitsu, “Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method,” Appl. Phys. Lett. 86(25), 253106 (2005).
[Crossref]

2004 (1)

X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[Crossref]

2002 (1)

O. E. Raola and G. F. Strouse, “Synthesis and characterization of Eu-doped cadmium selenide nanocrystals,” Nano Lett. 2(12), 1443–1447 (2002).
[Crossref]

2000 (1)

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54 µm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76(26), 3935–3937 (2000).
[Crossref]

1991 (1)

G. Cao, L. K. Rabenberg, C. M. Nunn, and T. E. Mallouk, “Formation of Quantum-Size Semiconductor Particles in a Layered Metal Phosphonate Host Lattice,” Chem. Mater. 3(1), 149–156 (1991).
[Crossref]

Alves, E.

A. S. Pereira, M. Peres, M. J. Soares, E. Alves, A. Neves, T. Monteiro, and T. Trindade, “Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals,” Nanotechnology 17(3), 834–839 (2006).
[Crossref]

Antonio, M. R.

Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, “Optical spectroscopy of Eu3+ doped ZnO nanocrystals,” J. Phys. Chem. C 112(3), 686–694 (2008).
[Crossref]

Aoyagi, Y.

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54 µm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76(26), 3935–3937 (2000).
[Crossref]

Badger, P. D.

D. A. Chengelis, A. M. Yingling, P. D. Badger, C. M. Shade, and S. Petoud, “Incorporating lanthanide cations with cadmium selenide nanocrystals: a strategy to sensitize and protect Tb(III),” J. Am. Chem. Soc. 127(48), 16752–16753 (2005).
[Crossref] [PubMed]

Bonner, C. E.

Cao, G.

G. Cao, L. K. Rabenberg, C. M. Nunn, and T. E. Mallouk, “Formation of Quantum-Size Semiconductor Particles in a Layered Metal Phosphonate Host Lattice,” Chem. Mater. 3(1), 149–156 (1991).
[Crossref]

Chao, K. F.

X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[Crossref]

Chen, L.

Chen, X. Y.

Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, “Optical spectroscopy of Eu3+ doped ZnO nanocrystals,” J. Phys. Chem. C 112(3), 686–694 (2008).
[Crossref]

Y. S. Liu, W. Q. Luo, R. F. Li, and X. Y. Chen, “Spectroscopic evidence of the multiple- site structure of Eu(3+) ions incorporated in ZnO nanocrystals,” Opt. Lett. 32(5), 566–568 (2007).
[Crossref] [PubMed]

Chengelis, D. A.

D. A. Chengelis, A. M. Yingling, P. D. Badger, C. M. Shade, and S. Petoud, “Incorporating lanthanide cations with cadmium selenide nanocrystals: a strategy to sensitize and protect Tb(III),” J. Am. Chem. Soc. 127(48), 16752–16753 (2005).
[Crossref] [PubMed]

Diamente, P. R.

P. R. Diamente, M. Raudsepp, and F. C. J. M. van Veggel, “Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 µm photoluminescence,” Adv. Funct. Mater. 17(3), 363–368 (2007).
[Crossref]

Douglas, L.

Feng, L. Y.

X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[Crossref]

Ford, H.

R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
[Crossref]

Huang, J. L.

Huang, W.

R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
[Crossref]

Ishizumi, A.

A. Ishizumi and Y. Kanemitsu, “Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method,” Appl. Phys. Lett. 86(25), 253106 (2005).
[Crossref]

Isshiki, H.

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54 µm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76(26), 3935–3937 (2000).
[Crossref]

Kanemitsu, Y.

A. Ishizumi and Y. Kanemitsu, “Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method,” Appl. Phys. Lett. 86(25), 253106 (2005).
[Crossref]

Katsumata, T.

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54 µm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76(26), 3935–3937 (2000).
[Crossref]

Komuro, S.

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54 µm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76(26), 3935–3937 (2000).
[Crossref]

Konda, R.

Kong, X. G.

X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[Crossref]

Li, R. F.

Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, “Optical spectroscopy of Eu3+ doped ZnO nanocrystals,” J. Phys. Chem. C 112(3), 686–694 (2008).
[Crossref]

Y. S. Liu, W. Q. Luo, R. F. Li, and X. Y. Chen, “Spectroscopic evidence of the multiple- site structure of Eu(3+) ions incorporated in ZnO nanocrystals,” Opt. Lett. 32(5), 566–568 (2007).
[Crossref] [PubMed]

Li, Y. J.

X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[Crossref]

Liu, F.

Liu, G. K.

Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, “Optical spectroscopy of Eu3+ doped ZnO nanocrystals,” J. Phys. Chem. C 112(3), 686–694 (2008).
[Crossref]

Liu, S. Y.

R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
[Crossref]

Liu, Y. S.

Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, “Optical spectroscopy of Eu3+ doped ZnO nanocrystals,” J. Phys. Chem. C 112(3), 686–694 (2008).
[Crossref]

Y. S. Liu, W. Q. Luo, R. F. Li, and X. Y. Chen, “Spectroscopic evidence of the multiple- site structure of Eu(3+) ions incorporated in ZnO nanocrystals,” Opt. Lett. 32(5), 566–568 (2007).
[Crossref] [PubMed]

Lu, S. Z.

X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[Crossref]

Luo, W. Q.

Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, “Optical spectroscopy of Eu3+ doped ZnO nanocrystals,” J. Phys. Chem. C 112(3), 686–694 (2008).
[Crossref]

Y. S. Liu, W. Q. Luo, R. F. Li, and X. Y. Chen, “Spectroscopic evidence of the multiple- site structure of Eu(3+) ions incorporated in ZnO nanocrystals,” Opt. Lett. 32(5), 566–568 (2007).
[Crossref] [PubMed]

Mallouk, T. E.

G. Cao, L. K. Rabenberg, C. M. Nunn, and T. E. Mallouk, “Formation of Quantum-Size Semiconductor Particles in a Layered Metal Phosphonate Host Lattice,” Chem. Mater. 3(1), 149–156 (1991).
[Crossref]

Monteiro, T.

A. S. Pereira, M. Peres, M. J. Soares, E. Alves, A. Neves, T. Monteiro, and T. Trindade, “Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals,” Nanotechnology 17(3), 834–839 (2006).
[Crossref]

Morikawa, T.

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54 µm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76(26), 3935–3937 (2000).
[Crossref]

Mundle, R.

Neves, A.

A. S. Pereira, M. Peres, M. J. Soares, E. Alves, A. Neves, T. Monteiro, and T. Trindade, “Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals,” Nanotechnology 17(3), 834–839 (2006).
[Crossref]

Nunn, C. M.

G. Cao, L. K. Rabenberg, C. M. Nunn, and T. E. Mallouk, “Formation of Quantum-Size Semiconductor Particles in a Layered Metal Phosphonate Host Lattice,” Chem. Mater. 3(1), 149–156 (1991).
[Crossref]

Peng, B.

R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
[Crossref]

Pereira, A. S.

A. S. Pereira, M. Peres, M. J. Soares, E. Alves, A. Neves, T. Monteiro, and T. Trindade, “Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals,” Nanotechnology 17(3), 834–839 (2006).
[Crossref]

Peres, M.

A. S. Pereira, M. Peres, M. J. Soares, E. Alves, A. Neves, T. Monteiro, and T. Trindade, “Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals,” Nanotechnology 17(3), 834–839 (2006).
[Crossref]

Petoud, S.

D. A. Chengelis, A. M. Yingling, P. D. Badger, C. M. Shade, and S. Petoud, “Incorporating lanthanide cations with cadmium selenide nanocrystals: a strategy to sensitize and protect Tb(III),” J. Am. Chem. Soc. 127(48), 16752–16753 (2005).
[Crossref] [PubMed]

Pradhan, A. K.

Qiu, X. M.

R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
[Crossref]

Rabenberg, L. K.

G. Cao, L. K. Rabenberg, C. M. Nunn, and T. E. Mallouk, “Formation of Quantum-Size Semiconductor Particles in a Layered Metal Phosphonate Host Lattice,” Chem. Mater. 3(1), 149–156 (1991).
[Crossref]

Raola, O. E.

O. E. Raola and G. F. Strouse, “Synthesis and characterization of Eu-doped cadmium selenide nanocrystals,” Nano Lett. 2(12), 1443–1447 (2002).
[Crossref]

Raudsepp, M.

P. R. Diamente, M. Raudsepp, and F. C. J. M. van Veggel, “Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 µm photoluminescence,” Adv. Funct. Mater. 17(3), 363–368 (2007).
[Crossref]

Sahu, D. R.

Shade, C. M.

D. A. Chengelis, A. M. Yingling, P. D. Badger, C. M. Shade, and S. Petoud, “Incorporating lanthanide cations with cadmium selenide nanocrystals: a strategy to sensitize and protect Tb(III),” J. Am. Chem. Soc. 127(48), 16752–16753 (2005).
[Crossref] [PubMed]

Shan, G. Y.

X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[Crossref]

Soares, M. J.

A. S. Pereira, M. Peres, M. J. Soares, E. Alves, A. Neves, T. Monteiro, and T. Trindade, “Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals,” Nanotechnology 17(3), 834–839 (2006).
[Crossref]

Strouse, G. F.

O. E. Raola and G. F. Strouse, “Synthesis and characterization of Eu-doped cadmium selenide nanocrystals,” Nano Lett. 2(12), 1443–1447 (2002).
[Crossref]

Sun, Y. J.

X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[Crossref]

Tang, G.

R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
[Crossref]

Tanner, P. A.

P. A. Tanner and L. X. Yu, “Photoluminescence of ZnO:Eu3+ nanoflowers,” J. Nanosci. Nanotechnol. 8(3), 1307–1311 (2008).
[PubMed]

Trindade, T.

A. S. Pereira, M. Peres, M. J. Soares, E. Alves, A. Neves, T. Monteiro, and T. Trindade, “Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals,” Nanotechnology 17(3), 834–839 (2006).
[Crossref]

van Veggel, F. C. J. M.

P. R. Diamente, M. Raudsepp, and F. C. J. M. van Veggel, “Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 µm photoluminescence,” Adv. Funct. Mater. 17(3), 363–368 (2007).
[Crossref]

Wang, X.

X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[Crossref]

Wang, X. J.

Wang, Z. Y.

X. Y. Zeng, J. L. Yuan, Z. Y. Wang, and L. Zhang, “Nanosheet-Based Microspheres of Eu3+-doped ZnO with Efficient Energy Transfer from ZnO to Eu3+ at Room temperature,” Adv. Mater. 19(24), 4510–4514 (2007).
[Crossref]

Wei, W.

R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
[Crossref]

Xu, X. X.

R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
[Crossref]

Yingling, A. M.

D. A. Chengelis, A. M. Yingling, P. D. Badger, C. M. Shade, and S. Petoud, “Incorporating lanthanide cations with cadmium selenide nanocrystals: a strategy to sensitize and protect Tb(III),” J. Am. Chem. Soc. 127(48), 16752–16753 (2005).
[Crossref] [PubMed]

Yu, K. H.

R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
[Crossref]

Yu, L. X.

P. A. Tanner and L. X. Yu, “Photoluminescence of ZnO:Eu3+ nanoflowers,” J. Nanosci. Nanotechnol. 8(3), 1307–1311 (2008).
[PubMed]

Yu, R. B.

R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
[Crossref]

Yu, Y.

X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[Crossref]

Yuan, J. L.

X. Y. Zeng, J. L. Yuan, Z. Y. Wang, and L. Zhang, “Nanosheet-Based Microspheres of Eu3+-doped ZnO with Efficient Energy Transfer from ZnO to Eu3+ at Room temperature,” Adv. Mater. 19(24), 4510–4514 (2007).
[Crossref]

Zeng, X. Y.

X. Y. Zeng, J. L. Yuan, Z. Y. Wang, and L. Zhang, “Nanosheet-Based Microspheres of Eu3+-doped ZnO with Efficient Energy Transfer from ZnO to Eu3+ at Room temperature,” Adv. Mater. 19(24), 4510–4514 (2007).
[Crossref]

Zhang, J. H.

Zhang, L.

X. Y. Zeng, J. L. Yuan, Z. Y. Wang, and L. Zhang, “Nanosheet-Based Microspheres of Eu3+-doped ZnO with Efficient Energy Transfer from ZnO to Eu3+ at Room temperature,” Adv. Mater. 19(24), 4510–4514 (2007).
[Crossref]

Zhang, X. M.

Zhao, X.

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54 µm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76(26), 3935–3937 (2000).
[Crossref]

Adv. Funct. Mater. (1)

P. R. Diamente, M. Raudsepp, and F. C. J. M. van Veggel, “Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 µm photoluminescence,” Adv. Funct. Mater. 17(3), 363–368 (2007).
[Crossref]

Adv. Mater. (2)

X. Y. Zeng, J. L. Yuan, Z. Y. Wang, and L. Zhang, “Nanosheet-Based Microspheres of Eu3+-doped ZnO with Efficient Energy Transfer from ZnO to Eu3+ at Room temperature,” Adv. Mater. 19(24), 4510–4514 (2007).
[Crossref]

R. B. Yu, K. H. Yu, W. Wei, X. X. Xu, X. M. Qiu, S. Y. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, “Nd2O3 Nanoparticles Modified with a Silane-Coupling Agent as a Liquid Laser Medium,” Adv. Mater. 19(6), 838–842 (2007).
[Crossref]

Appl. Phys. Lett. (2)

S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54 µm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett. 76(26), 3935–3937 (2000).
[Crossref]

A. Ishizumi and Y. Kanemitsu, “Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method,” Appl. Phys. Lett. 86(25), 253106 (2005).
[Crossref]

Chem. Mater. (1)

G. Cao, L. K. Rabenberg, C. M. Nunn, and T. E. Mallouk, “Formation of Quantum-Size Semiconductor Particles in a Layered Metal Phosphonate Host Lattice,” Chem. Mater. 3(1), 149–156 (1991).
[Crossref]

J. Am. Chem. Soc. (1)

D. A. Chengelis, A. M. Yingling, P. D. Badger, C. M. Shade, and S. Petoud, “Incorporating lanthanide cations with cadmium selenide nanocrystals: a strategy to sensitize and protect Tb(III),” J. Am. Chem. Soc. 127(48), 16752–16753 (2005).
[Crossref] [PubMed]

J. Nanosci. Nanotechnol. (1)

P. A. Tanner and L. X. Yu, “Photoluminescence of ZnO:Eu3+ nanoflowers,” J. Nanosci. Nanotechnol. 8(3), 1307–1311 (2008).
[PubMed]

J. Phys. Chem. B (1)

X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[Crossref]

J. Phys. Chem. C (1)

Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, “Optical spectroscopy of Eu3+ doped ZnO nanocrystals,” J. Phys. Chem. C 112(3), 686–694 (2008).
[Crossref]

Nano Lett. (1)

O. E. Raola and G. F. Strouse, “Synthesis and characterization of Eu-doped cadmium selenide nanocrystals,” Nano Lett. 2(12), 1443–1447 (2002).
[Crossref]

Nanotechnology (1)

A. S. Pereira, M. Peres, M. J. Soares, E. Alves, A. Neves, T. Monteiro, and T. Trindade, “Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals,” Nanotechnology 17(3), 834–839 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 XRD patterns of Nd3+ (a) and Tm3+ (b) doped ZnO nanocrystals, and (c) high-resolution TEM image of Nd3+ doped ZnO nanocrystals.
Fig. 2
Fig. 2 The RT diffuse reflectance spectra of Nd3+ (a) and Tm3+ (b) doped ZnO nanocrystals. The inset shows the plot of F(R)2 vs photon energy of Nd3+ and Tm3+ doped ZnO nanocrystals, where F(R) = (1-R)2/2R, and R is the reflectance. Band gap energies of ZnO nanocrystals were determined by the extrapolation to F(R) = 0.
Fig. 3
Fig. 3 The RT (a) and 4.2 K (b) NIR luminescence of Nd3+ doped ZnO nanocrystals under 811-nm laser excitation. The insets show the schematic diagram of excitation and emission levels of Nd3+ (upper) and the normalized PL spectra at 4.2-50 K (lower).
Fig. 4
Fig. 4 Time evolutions of PL spectra of Nd3+ ions doped ZnO nanocrystals obtained under the 811-nm laser excitation. The inset exhibits the RT luminescence decay curves of Nd3+ ions in ZnO nanocrystals by monitoring the 4F3/24I11/2 transitions at 1066 (a) and 1082 nm (b), respectively.
Fig. 5
Fig. 5 The RT (a) and 4.2 K (b) NIR luminescence of Tm3+ doped ZnO nanocrystals under 801 nm laser excitation. The inset shows the schematic diagram of excitation and emission levels of Tm3+.

Metrics