Abstract

Abstract: Transmission enhanced dual-wavelength light beaming is realized by a dielectric-metal-dielectric structure. Guided-mode resonance theory is used on the dielectric grating flanked single nanoslit in an optically thick metal to predict the original structure parameters for transmission enhanced dual-wavelength (442 nm and 633 nm) light beaming. Finite-difference time-domain numerical simulations confirm the theoretical prediction and demonstrate that the normalized-to-area transmittance of 10.8 and 14.7 and beaming angle of 2.40° and 2.65° for 442 nm and 633 nm, respectively, are achieved with a single structure, suggesting the potential applications of such structures in optical data storage, nanoscale wavelength multiplexing, directional light sources and emitters.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings

Jian Zhang and Guo Ping Wang
J. Opt. Soc. Am. B 25(8) 1356-1361 (2008)

Nanocavity antenna array for enhancing extraordinary optical transmission of light through a metallic nanoslit

Yanxia Cui, Jun Hu, and Sailing He
J. Opt. Soc. Am. B 26(11) 2131-2135 (2009)

Direction-tunable enhanced emission from a subwavelength metallic double-nanoslit structure

Xiaohong Song, Nini Wang, Ming Yan, Cheng Lin, Jens Förstner, and Weifeng Yang
Opt. Express 25(12) 13207-13214 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [Crossref] [PubMed]
  3. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
    [Crossref]
  4. F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
    [Crossref]
  5. B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85(16), 3599–3601 (2004).
    [Crossref]
  6. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
    [Crossref] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79(8), 1076–1078 (2001).
    [Crossref]
  8. L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
    [Crossref]
  9. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
    [Crossref] [PubMed]
  10. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
    [Crossref] [PubMed]
  11. D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14(8), 3503–3511 (2006).
    [Crossref] [PubMed]
  12. Z.-B. Li, J.-G. Tian, W.-Y. Zhou, W.-P. Zang, and C.-P. Zhang, “Periodic dielectric bars assisted enhanced transmission and directional light emission from a single subwavelength slit,” Opt. Express 14(18), 8037–8042 (2006).
    [Crossref] [PubMed]
  13. B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88(1), 013114 (2006).
    [Crossref]
  14. J. Zhang and G. P. Wang, “Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings,” J. Opt. Soc. Am. B 25(8), 1356–1361 (2008).
    [Crossref]
  15. J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostructures-Fundamentals Appl. 1(1), 55–62 (2003).
    [Crossref]
  16. J. Wuenschell and H. K. Kim, “Excitation and Propagation of Surface Plasmons in a Metallic Nanoslit Structure,” IEEE Trans. NanoTechnol. 7(2), 229–236 (2008).
    [Crossref]
  17. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990).
    [Crossref]
  18. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  19. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  20. E. D. Palik, Handbook of Optical Constants of Solids, (Academic, New York, 1985).

2008 (2)

J. Zhang and G. P. Wang, “Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings,” J. Opt. Soc. Am. B 25(8), 1356–1361 (2008).
[Crossref]

J. Wuenschell and H. K. Kim, “Excitation and Propagation of Surface Plasmons in a Metallic Nanoslit Structure,” IEEE Trans. NanoTechnol. 7(2), 229–236 (2008).
[Crossref]

2006 (3)

2005 (1)

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
[Crossref]

2004 (3)

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85(16), 3599–3601 (2004).
[Crossref]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[Crossref] [PubMed]

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[Crossref]

2003 (4)

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[Crossref]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostructures-Fundamentals Appl. 1(1), 55–62 (2003).
[Crossref]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

2001 (1)

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79(8), 1076–1078 (2001).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1995 (1)

1990 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Bagby, J. S.

Boltasseva, A.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79(8), 1076–1078 (2001).
[Crossref]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79(8), 1076–1078 (2001).
[Crossref]

Bravo-Abad, J.

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostructures-Fundamentals Appl. 1(1), 55–62 (2003).
[Crossref]

Chang, C.-K.

Chang, Y.-C.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
[Crossref]

Chen, Y.-C.

D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14(8), 3503–3511 (2006).
[Crossref] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Garcia-Vidal, F. J.

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostructures-Fundamentals Appl. 1(1), 55–62 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[Crossref]

Gaylord, T. K.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Grann, E. B.

Huang, K.-T.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kim, H. K.

J. Wuenschell and H. K. Kim, “Excitation and Propagation of Surface Plasmons in a Metallic Nanoslit Structure,” IEEE Trans. NanoTechnol. 7(2), 229–236 (2008).
[Crossref]

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[Crossref]

Kuan, C.-H.

Lee, C.-K.

D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14(8), 3503–3511 (2006).
[Crossref] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
[Crossref]

Leosson, K.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79(8), 1076–1078 (2001).
[Crossref]

Lezec, H. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, Z.-B.

Liaw, J.-W.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
[Crossref]

Lin, D.-Z.

D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14(8), 3503–3511 (2006).
[Crossref] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
[Crossref]

Lin, M.-W.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Liu, J.-M.

D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14(8), 3503–3511 (2006).
[Crossref] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
[Crossref]

Magnusson, R.

Martin-Moreno, L.

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostructures-Fundamentals Appl. 1(1), 55–62 (2003).
[Crossref]

Martín-Moreno, L.

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[Crossref]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Moharam, M. G.

Pommet, D. A.

Sun, Z.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tian, J.-G.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79(8), 1076–1078 (2001).
[Crossref]

Wang, B.

B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88(1), 013114 (2006).
[Crossref]

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85(16), 3599–3601 (2004).
[Crossref]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[Crossref] [PubMed]

Wang, G. P.

J. Zhang and G. P. Wang, “Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings,” J. Opt. Soc. Am. B 25(8), 1356–1361 (2008).
[Crossref]

B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88(1), 013114 (2006).
[Crossref]

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85(16), 3599–3601 (2004).
[Crossref]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[Crossref] [PubMed]

Wang, S. S.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wuenschell, J.

J. Wuenschell and H. K. Kim, “Excitation and Propagation of Surface Plasmons in a Metallic Nanoslit Structure,” IEEE Trans. NanoTechnol. 7(2), 229–236 (2008).
[Crossref]

Yang, D.-L.

Yeh, C.-S.

D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14(8), 3503–3511 (2006).
[Crossref] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
[Crossref]

Yeh, J.-T.

D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14(8), 3503–3511 (2006).
[Crossref] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
[Crossref]

Yu, L.-B.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
[Crossref]

Zang, W.-P.

Zhang, C.-P.

Zhang, J.

Zhou, W.-Y.

Appl. Phys. Lett. (5)

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[Crossref]

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85(16), 3599–3601 (2004).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79(8), 1076–1078 (2001).
[Crossref]

B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88(1), 013114 (2006).
[Crossref]

IEEE Trans. NanoTechnol. (1)

J. Wuenschell and H. K. Kim, “Excitation and Propagation of Surface Plasmons in a Metallic Nanoslit Structure,” IEEE Trans. NanoTechnol. 7(2), 229–236 (2008).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Photon. Nanostructures-Fundamentals Appl. (1)

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostructures-Fundamentals Appl. 1(1), 55–62 (2003).
[Crossref]

Phys. Rev. B (2)

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids, (Academic, New York, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (Color online) Proposed structure for transmission enhanced directional beaming of dual-wavelength light. For parameters in the figure, see the text.
Fig. 2
Fig. 2 (Color online) (a) FDTD simulated dependence of normalized-to-area transmittance on wavelength for the structure with only output grating (dash-dotted black curve), TPSPs (dashed blue curve) and OSPs (solid red curve), respectively. (b), (c) Wavelength dependence of peak 1 around 442 nm (Lines L1, L3) and peak 2 around 633 nm (Lines L2, L4) on the input grating thickness hi [(b)] and period Λi [(c)], respectively, while the other parameters are at OSPs. (d) Normalized-to-area transmittance of the beaming light on the error δ of grating structure parameters ai and hi for λ1 = 442 nm (Curve C1 for ai and Curve C3 for hi ) and λ2 = 633 nm (Curve C2 for ai and Curve C4 for hi ), respectively, while the other parameters are at OSPs.
Fig. 3
Fig. 3 (Color online) (a) FDTD simulated dependence of HAHMs and DEs of emitted central beams on wavelength deviation Δλ from λ1 = 442 nm (Curve C5 and Curve C7) and λ2 = 633 nm (Curve C6 and Curve C8). Inset, dispersion relation of TM1 (solid blue line) and TM0 (dotted red line) from Eq. (2) with hi = 220 nm. (b) Dependence of the normalized transmittance and HAHMs of the emitted central beams on the incident angle |θ| for λ1 = 442 nm (Curve C9 and Curve C11) and λ2 = 633 nm (Curve C10 and Curve C12). OSPs are used at both input and output gratings.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

βrλ1=βrλ2=2πΛi+k0sinϕ
kavhiatan(εavkaε0kav)atan(εavkmεmkav)=mπ,m=0,1,2...

Metrics