Abstract

1W quasi-white-light source has been generated from a single lithium tantalate with cascaded domain modulation. The quasi-white-light is combined by proper proportion of the red, green and blue laser light. The red and the blue result from a compact self-sum frequency optical parametric oscillation when pumped by a single green laser. The efficiency of quasi-white-light from the green pump reaches 27%. This compact design can be employed not only as a stable and powerful RGB light source but also an effective blue laser generator.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integrated noncollinear red–green–blue laser light source using a two-dimensional nonlinear photonic quasicrystal

Lina Zhao, Zhen Qi, Ye Yuan, Jun Lu, Yanhua Liu, Changdong Chen, Xinjie Lv, Zhenda Xie, Xiaopeng Hu, Gang Zhao, Ping Xu, and Shining Zhu
J. Opt. Soc. Am. B 28(4) 608-612 (2011)

Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalate

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu
Opt. Lett. 33(23) 2791-2793 (2008)

Analysis of nonlinear wavelength conversion system for a red-green-blue laser-projection source

Edith Innerhofer, Felix Brunner, Sergio V. Marchese, Rüdiger Paschotta, Gunnar Arisholm, Sunao Kurimura, Kenji Kitamura, Takeshi Usami, Hiromasa Ito, and Ursula Keller
J. Opt. Soc. Am. B 23(2) 265-275 (2006)

References

  • View by:
  • |
  • |
  • |

  1. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
    [Crossref] [PubMed]
  2. A. Brenier, C. Y. Tu, Z. J. Zhu, and B. C. Wu, “Red–green–blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034 (2004).
    [Crossref]
  3. J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate,” Appl. Phys. Lett. 78(2), 144 (2001).
    [Crossref]
  4. H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
    [Crossref]
  5. X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33(4), 408–410 (2008).
    [Crossref] [PubMed]
  6. J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22(16), 1214–1216 (1997).
    [Crossref] [PubMed]
  7. Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett. 89(18), 181101 (2006).
    [Crossref]
  8. M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectrics 273(1), 199–204 (2002).
    [Crossref]
  9. N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol % MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85(22), 5134 (2004).
    [Crossref]
  10. A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445 (2004).
    [Crossref]
  11. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
    [Crossref] [PubMed]

2008 (2)

2006 (1)

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

2004 (5)

A. Brenier, C. Y. Tu, Z. J. Zhu, and B. C. Wu, “Red–green–blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034 (2004).
[Crossref]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol % MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85(22), 5134 (2004).
[Crossref]

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445 (2004).
[Crossref]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
[Crossref]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
[Crossref] [PubMed]

2002 (1)

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

2001 (1)

J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate,” Appl. Phys. Lett. 78(2), 144 (2001).
[Crossref]

1997 (1)

Arisholm, G.

Brenier, A.

A. Brenier, C. Y. Tu, Z. J. Zhu, and B. C. Wu, “Red–green–blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034 (2004).
[Crossref]

Bruner, A.

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445 (2004).
[Crossref]

Brunner, F.

Capmany, J.

J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate,” Appl. Phys. Lett. 78(2), 144 (2001).
[Crossref]

Eger, D.

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445 (2004).
[Crossref]

Fan, Y. X.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
[Crossref]

Fejer, M. M.

Furukawa, Y.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

Gao, Z. D.

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33(4), 408–410 (2008).
[Crossref] [PubMed]

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
[Crossref]

He, J. L.

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33(4), 408–410 (2008).
[Crossref] [PubMed]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
[Crossref]

Hu, X. P.

Innerhofer, E.

Ito, H.

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
[Crossref] [PubMed]

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

Katagai, T.

Keller, U.

Kitamura, K.

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
[Crossref] [PubMed]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol % MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85(22), 5134 (2004).
[Crossref]

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

Kung, A. H.

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

Kurimura, S.

Li, H. X.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
[Crossref]

Liu, H.

Lu, P.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
[Crossref]

Marchese, S. V.

Meyn, J. P.

Ming, N. B.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
[Crossref]

Mio, N.

Moriwaki, S.

Nakamura, K.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

Nakamura, M.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol % MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85(22), 5134 (2004).
[Crossref]

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

Nomura, Y.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol % MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85(22), 5134 (2004).
[Crossref]

Ohmae, N.

Paschotta, R.

Ruschin, S.

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445 (2004).
[Crossref]

Sakuma, J.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol % MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85(22), 5134 (2004).
[Crossref]

Südmeyer, T.

Sumiyoshi, T.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol % MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85(22), 5134 (2004).
[Crossref]

Suzuki, I.

Takada, Y.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol % MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85(22), 5134 (2004).
[Crossref]

Takekawa, S.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

Takeno, K.

Terabe, K.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

Tovstonog, S. V.

Tu, C. Y.

A. Brenier, C. Y. Tu, Z. J. Zhu, and B. C. Wu, “Red–green–blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034 (2004).
[Crossref]

Tu, S. Y.

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

Usami, T.

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
[Crossref] [PubMed]

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

Wang, H. T.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
[Crossref]

Wang, X.

Wu, B. C.

A. Brenier, C. Y. Tu, Z. J. Zhu, and B. C. Wu, “Red–green–blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034 (2004).
[Crossref]

Xu, P.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
[Crossref]

Yan, Z.

Yu, N. E.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol % MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85(22), 5134 (2004).
[Crossref]

Zhao, G.

Zhu, S. N.

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33(4), 408–410 (2008).
[Crossref] [PubMed]

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
[Crossref]

Zhu, Y. Y.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
[Crossref]

Zhu, Z. J.

A. Brenier, C. Y. Tu, Z. J. Zhu, and B. C. Wu, “Red–green–blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034 (2004).
[Crossref]

Appl. Phys. Lett. (4)

A. Brenier, C. Y. Tu, Z. J. Zhu, and B. C. Wu, “Red–green–blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034 (2004).
[Crossref]

J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate,” Appl. Phys. Lett. 78(2), 144 (2001).
[Crossref]

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol % MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett. 85(22), 5134 (2004).
[Crossref]

Ferroelectrics (1)

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

J. Appl. Phys. (2)

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445 (2004).
[Crossref]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96(12), 7756 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The micrograph of the tandem periodically poled lithium tantalate and the cavity design. (b) The elliptical spot at the focus plane of the pump.
Fig. 2
Fig. 2 The red and blue power when the pump power increases. The insert photos are taken by a digital camera.
Fig. 3
Fig. 3 The power dependence of the red and blue on the temperature.
Fig. 4
Fig. 4 The dependence of the central wavelength of the red and the blue on the temperature.

Metrics