Abstract

We consider two-dimensional three-component photonic crystals wherein one component is modeled as a drude-dispersive metal. It is found that the dispersion relation of light in this environment depends critically on the configuration of the metallic and dielectric components. In particular, for the case of an incident electromagnetic wave with electric field vector parallel to the axis of the cylinders it is shown that the presence of dielectric shells covering the metallic cylinders leads to a closing of the structural band gap with increased filling factor, as would be expected for a purely dielectric photonic crystal. For the same polarization, the photonic band structure of an array of metallic shell cylinders with dielectric cores do not show the closing of the structural band gap with increased filling factor of the metallic component. In this geometry, the photonic band structure contains bands with very small values of group velocity with some bands having a maximum of group velocity as small as .05c.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Backward propagating slow light in inverted plasmonic taper

Eyal Feigenbaum and Meir Orenstein
Opt. Express 17(4) 2465-2469 (2009)

Multiple scattering theory and its application to photonic band gap systems consisting of coated spheres

Weiyi Zhang, C. T. Chan, and Ping Sheng
Opt. Express 8(3) 203-208 (2001)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John and R. Rangarajan, “Optimal structures for classical wave localization: an alternative to the ioffe-regel criterion,” Phys. Rev. B 38, 10101–10104 (1988).
    [Crossref]
  3. R. Sprik, B.A. Van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
    [Crossref]
  4. T. Trifonov, L. F. Marsal, A. Rodriguez, J. Pallares, and R. Alcubilla, “Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer,” Phys. Rev. B 70, 195108-1–195108-8 (2004).
    [Crossref]
  5. P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
    [Crossref]
  6. J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).
    [Crossref] [PubMed]
  7. K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116-1–045116-8 (2001).
    [Crossref]
  8. T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117-1–045117-8 (2001).
    [Crossref]
  9. A. Christ, T. Zentgrafand, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70, 125113-1–125113-15 (2004).
    [Crossref]
  10. J. B. Pendry, “Photonic Band Structures,” J. Mod. Opt. 41, 209–229 (1994).
    [Crossref]
  11. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
    [Crossref]
  12. A. Glushko and L. Karachevtseva, “PBG properties of three-component 2D photonic crystals,” Photonics and nanostructures-fundamentals and applications 4, 141–145 (2006).
    [Crossref]
  13. V. Kuzmiak and A.A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
    [Crossref]
  14. V. Kuzmiak and A.A. Maradudin, “Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components,” Phys. Rev. B 58, 7230–7251 (1998).
    [Crossref]
  15. M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408-1–245408-8 (2002).
    [Crossref]
  16. O. Sakai, T. Sakaguchi, and K. Tachibana, “Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves,” J. Appl. Phys. 101, 073304-1–07334-9 (2007).
    [Crossref]
  17. T. Sakaguchi, O. Sakai, and K. Tachibana, “Photonic bands and two-dimensional microplasma arrays. II. Band gaps observed in millimeter and subeterahertz ranges,” J. Appl. Phys. 101, 073305-1–07335-7 (2007).
    [Crossref]
  18. C. Hafner, C. Xudong, and R. Vahldieck, “;Metallic photonic crystals at optical frequencies,” Journal of computational and theoretical nanoscience 2, 240–250 (2005).
    [Crossref]
  19. R.-L. Chern, C. C. Chang, and C. C. Chang, “Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions,” Phys. Rev. E 73, 036605-1–036605-15 (2004).
  20. C. C. H. Tang, “Backscattering from dielectric-coated infinite cylindrical obstacles,” J. Appl. Phys. 28, 628–633 (1957).
    [Crossref]
  21. P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B 84, 35–41 (2006).
    [Crossref]

2007 (3)

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

O. Sakai, T. Sakaguchi, and K. Tachibana, “Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves,” J. Appl. Phys. 101, 073304-1–07334-9 (2007).
[Crossref]

T. Sakaguchi, O. Sakai, and K. Tachibana, “Photonic bands and two-dimensional microplasma arrays. II. Band gaps observed in millimeter and subeterahertz ranges,” J. Appl. Phys. 101, 073305-1–07335-7 (2007).
[Crossref]

2006 (2)

A. Glushko and L. Karachevtseva, “PBG properties of three-component 2D photonic crystals,” Photonics and nanostructures-fundamentals and applications 4, 141–145 (2006).
[Crossref]

P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B 84, 35–41 (2006).
[Crossref]

2005 (1)

C. Hafner, C. Xudong, and R. Vahldieck, “;Metallic photonic crystals at optical frequencies,” Journal of computational and theoretical nanoscience 2, 240–250 (2005).
[Crossref]

2004 (3)

R.-L. Chern, C. C. Chang, and C. C. Chang, “Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions,” Phys. Rev. E 73, 036605-1–036605-15 (2004).

A. Christ, T. Zentgrafand, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70, 125113-1–125113-15 (2004).
[Crossref]

T. Trifonov, L. F. Marsal, A. Rodriguez, J. Pallares, and R. Alcubilla, “Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer,” Phys. Rev. B 70, 195108-1–195108-8 (2004).
[Crossref]

2002 (1)

M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408-1–245408-8 (2002).
[Crossref]

2001 (2)

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116-1–045116-8 (2001).
[Crossref]

T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117-1–045117-8 (2001).
[Crossref]

1998 (1)

V. Kuzmiak and A.A. Maradudin, “Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components,” Phys. Rev. B 58, 7230–7251 (1998).
[Crossref]

1997 (1)

V. Kuzmiak and A.A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
[Crossref]

1996 (1)

R. Sprik, B.A. Van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[Crossref]

1994 (1)

J. B. Pendry, “Photonic Band Structures,” J. Mod. Opt. 41, 209–229 (1994).
[Crossref]

1992 (1)

J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).
[Crossref] [PubMed]

1991 (1)

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[Crossref]

1988 (1)

S. John and R. Rangarajan, “Optimal structures for classical wave localization: an alternative to the ioffe-regel criterion,” Phys. Rev. B 38, 10101–10104 (1988).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

1957 (1)

C. C. H. Tang, “Backscattering from dielectric-coated infinite cylindrical obstacles,” J. Appl. Phys. 28, 628–633 (1957).
[Crossref]

Alcubilla, R.

T. Trifonov, L. F. Marsal, A. Rodriguez, J. Pallares, and R. Alcubilla, “Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer,” Phys. Rev. B 70, 195108-1–195108-8 (2004).
[Crossref]

Atkinson, R.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

Chang, C. C.

R.-L. Chern, C. C. Chang, and C. C. Chang, “Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions,” Phys. Rev. E 73, 036605-1–036605-15 (2004).

R.-L. Chern, C. C. Chang, and C. C. Chang, “Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions,” Phys. Rev. E 73, 036605-1–036605-15 (2004).

Chern, R.-L.

R.-L. Chern, C. C. Chang, and C. C. Chang, “Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions,” Phys. Rev. E 73, 036605-1–036605-15 (2004).

Christ, A.

A. Christ, T. Zentgrafand, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70, 125113-1–125113-15 (2004).
[Crossref]

Chutinan, A.

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116-1–045116-8 (2001).
[Crossref]

Dickson, W.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

Evans, P. R.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

Giessen, H.

A. Christ, T. Zentgrafand, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70, 125113-1–125113-15 (2004).
[Crossref]

Gippius, N. A.

A. Christ, T. Zentgrafand, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70, 125113-1–125113-15 (2004).
[Crossref]

Glushko, A.

A. Glushko and L. Karachevtseva, “PBG properties of three-component 2D photonic crystals,” Photonics and nanostructures-fundamentals and applications 4, 141–145 (2006).
[Crossref]

Hafner, C.

C. Hafner, C. Xudong, and R. Vahldieck, “;Metallic photonic crystals at optical frequencies,” Journal of computational and theoretical nanoscience 2, 240–250 (2005).
[Crossref]

Hendren, W.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

Hirao, K.

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116-1–045116-8 (2001).
[Crossref]

Ito, T.

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116-1–045116-8 (2001).
[Crossref]

T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117-1–045117-8 (2001).
[Crossref]

John, S.

S. John and R. Rangarajan, “Optimal structures for classical wave localization: an alternative to the ioffe-regel criterion,” Phys. Rev. B 38, 10101–10104 (1988).
[Crossref]

Karachevtseva, L.

A. Glushko and L. Karachevtseva, “PBG properties of three-component 2D photonic crystals,” Photonics and nanostructures-fundamentals and applications 4, 141–145 (2006).
[Crossref]

Kawai, N.

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116-1–045116-8 (2001).
[Crossref]

Kretschmann, M.

M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408-1–245408-8 (2002).
[Crossref]

Kuhl, J.

A. Christ, T. Zentgrafand, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70, 125113-1–125113-15 (2004).
[Crossref]

Kuzmiak, V.

V. Kuzmiak and A.A. Maradudin, “Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components,” Phys. Rev. B 58, 7230–7251 (1998).
[Crossref]

V. Kuzmiak and A.A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
[Crossref]

Lagendijk, A.

R. Sprik, B.A. Van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[Crossref]

Le, F.

P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B 84, 35–41 (2006).
[Crossref]

MacKinnon, A.

J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).
[Crossref] [PubMed]

Maradudin, A. A.

M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408-1–245408-8 (2002).
[Crossref]

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[Crossref]

Maradudin, A.A.

V. Kuzmiak and A.A. Maradudin, “Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components,” Phys. Rev. B 58, 7230–7251 (1998).
[Crossref]

V. Kuzmiak and A.A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
[Crossref]

Marsal, L. F.

T. Trifonov, L. F. Marsal, A. Rodriguez, J. Pallares, and R. Alcubilla, “Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer,” Phys. Rev. B 70, 195108-1–195108-8 (2004).
[Crossref]

Mitsuyu, T.

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116-1–045116-8 (2001).
[Crossref]

Noda, S.

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116-1–045116-8 (2001).
[Crossref]

Nordlander, P.

P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B 84, 35–41 (2006).
[Crossref]

O’Connor, D.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

Pallares, J.

T. Trifonov, L. F. Marsal, A. Rodriguez, J. Pallares, and R. Alcubilla, “Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer,” Phys. Rev. B 70, 195108-1–195108-8 (2004).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Photonic Band Structures,” J. Mod. Opt. 41, 209–229 (1994).
[Crossref]

J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).
[Crossref] [PubMed]

Plihal, M.

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[Crossref]

Pollard, R. J.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

Rangarajan, R.

S. John and R. Rangarajan, “Optimal structures for classical wave localization: an alternative to the ioffe-regel criterion,” Phys. Rev. B 38, 10101–10104 (1988).
[Crossref]

Rodriguez, A.

T. Trifonov, L. F. Marsal, A. Rodriguez, J. Pallares, and R. Alcubilla, “Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer,” Phys. Rev. B 70, 195108-1–195108-8 (2004).
[Crossref]

Sakaguchi, T.

O. Sakai, T. Sakaguchi, and K. Tachibana, “Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves,” J. Appl. Phys. 101, 073304-1–07334-9 (2007).
[Crossref]

T. Sakaguchi, O. Sakai, and K. Tachibana, “Photonic bands and two-dimensional microplasma arrays. II. Band gaps observed in millimeter and subeterahertz ranges,” J. Appl. Phys. 101, 073305-1–07335-7 (2007).
[Crossref]

Sakai, O.

O. Sakai, T. Sakaguchi, and K. Tachibana, “Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves,” J. Appl. Phys. 101, 073304-1–07334-9 (2007).
[Crossref]

T. Sakaguchi, O. Sakai, and K. Tachibana, “Photonic bands and two-dimensional microplasma arrays. II. Band gaps observed in millimeter and subeterahertz ranges,” J. Appl. Phys. 101, 073305-1–07335-7 (2007).
[Crossref]

Sakoda, K.

T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117-1–045117-8 (2001).
[Crossref]

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116-1–045116-8 (2001).
[Crossref]

Sprik, R.

R. Sprik, B.A. Van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[Crossref]

Tachibana, K.

O. Sakai, T. Sakaguchi, and K. Tachibana, “Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves,” J. Appl. Phys. 101, 073304-1–07334-9 (2007).
[Crossref]

T. Sakaguchi, O. Sakai, and K. Tachibana, “Photonic bands and two-dimensional microplasma arrays. II. Band gaps observed in millimeter and subeterahertz ranges,” J. Appl. Phys. 101, 073305-1–07335-7 (2007).
[Crossref]

Tang, C. C. H.

C. C. H. Tang, “Backscattering from dielectric-coated infinite cylindrical obstacles,” J. Appl. Phys. 28, 628–633 (1957).
[Crossref]

Tikhodeev, S. G.

A. Christ, T. Zentgrafand, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70, 125113-1–125113-15 (2004).
[Crossref]

Trifonov, T.

T. Trifonov, L. F. Marsal, A. Rodriguez, J. Pallares, and R. Alcubilla, “Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer,” Phys. Rev. B 70, 195108-1–195108-8 (2004).
[Crossref]

Vahldieck, R.

C. Hafner, C. Xudong, and R. Vahldieck, “;Metallic photonic crystals at optical frequencies,” Journal of computational and theoretical nanoscience 2, 240–250 (2005).
[Crossref]

Van Tiggelen, B.A.

R. Sprik, B.A. Van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[Crossref]

Wurtz, G. A.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

Xudong, C.

C. Hafner, C. Xudong, and R. Vahldieck, “;Metallic photonic crystals at optical frequencies,” Journal of computational and theoretical nanoscience 2, 240–250 (2005).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Zayats, A. V.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

Zentgrafand, T.

A. Christ, T. Zentgrafand, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70, 125113-1–125113-15 (2004).
[Crossref]

Appl. Phys. B (1)

P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B 84, 35–41 (2006).
[Crossref]

Europhys. Lett. (1)

R. Sprik, B.A. Van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
[Crossref]

J. Appl. Phys. (3)

O. Sakai, T. Sakaguchi, and K. Tachibana, “Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves,” J. Appl. Phys. 101, 073304-1–07334-9 (2007).
[Crossref]

T. Sakaguchi, O. Sakai, and K. Tachibana, “Photonic bands and two-dimensional microplasma arrays. II. Band gaps observed in millimeter and subeterahertz ranges,” J. Appl. Phys. 101, 073305-1–07335-7 (2007).
[Crossref]

C. C. H. Tang, “Backscattering from dielectric-coated infinite cylindrical obstacles,” J. Appl. Phys. 28, 628–633 (1957).
[Crossref]

J. Mod. Opt. (1)

J. B. Pendry, “Photonic Band Structures,” J. Mod. Opt. 41, 209–229 (1994).
[Crossref]

J. Phys. Chem. C (1)

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

Journal of computational and theoretical nanoscience (1)

C. Hafner, C. Xudong, and R. Vahldieck, “;Metallic photonic crystals at optical frequencies,” Journal of computational and theoretical nanoscience 2, 240–250 (2005).
[Crossref]

Photonics and nanostructures-fundamentals and applications (1)

A. Glushko and L. Karachevtseva, “PBG properties of three-component 2D photonic crystals,” Photonics and nanostructures-fundamentals and applications 4, 141–145 (2006).
[Crossref]

Phys. Rev. B (9)

V. Kuzmiak and A.A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
[Crossref]

V. Kuzmiak and A.A. Maradudin, “Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components,” Phys. Rev. B 58, 7230–7251 (1998).
[Crossref]

M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408-1–245408-8 (2002).
[Crossref]

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116-1–045116-8 (2001).
[Crossref]

T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117-1–045117-8 (2001).
[Crossref]

A. Christ, T. Zentgrafand, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70, 125113-1–125113-15 (2004).
[Crossref]

T. Trifonov, L. F. Marsal, A. Rodriguez, J. Pallares, and R. Alcubilla, “Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer,” Phys. Rev. B 70, 195108-1–195108-8 (2004).
[Crossref]

S. John and R. Rangarajan, “Optimal structures for classical wave localization: an alternative to the ioffe-regel criterion,” Phys. Rev. B 38, 10101–10104 (1988).
[Crossref]

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[Crossref]

Phys. Rev. E (1)

R.-L. Chern, C. C. Chang, and C. C. Chang, “Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions,” Phys. Rev. E 73, 036605-1–036605-15 (2004).

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. The Wigner-Seitz cell of the two-dimensional three-component crystal. The lattice constant is a. The radius of the inner core cylinder is R. The thickness of the shell is d. The three dielectric regions are shown. The first Brillouin zone and points of high symmetry are shown in the inset.
Fig. 2.
Fig. 2. The three lowest photonic bands of a two-component photonic crystal composed of metallic cylinders of filling factor .01 (a-c) and .1 (d-f) arranged in a square lattice. (a,d) The real part of the band structure. (b,e) The imaginary part of the band structure. (c,f) The lifetime of the states.
Fig. 3.
Fig. 3. The six lowest E-polarized photonic bands of a two-component photonic crystal composed of metallic cylinders arranged in a square lattice. (a) Metallic filling factor is .1. (b) Metallic filling factor is .6.
Fig. 4.
Fig. 4. The six lowest E-polarized photonic bands of a three-component photonic crystal composed of metallic cylinders surrounded by a dielectric shell of permittivity ε = 12 arranged in a square lattice. The filling factor of the dielectric is .1. (a,b) Real part of the band structure. (c,d) Lifetime of the states. (a,c) Metallic filling factor is .1. (b,d) Metallic filling factor is .6. Discontinuities in the imaginary parts of the band structure result from the fact that eigenvalues are sorted by real part of ω; when one lists the eigenvalues this way on either side of a band crossing and then plots a truncated number of bands, the imaginary parts of the eigenvalues can appear discontinuous.
Fig. 5.
Fig. 5. The six lowest E-polarized photonic bands of a three-component photonic crystal composed of dielectric cylinders of permittivity ε = 12 surrounded by a metallic shell arranged in a square lattice. The filling factor of the dielectric is .1. (a,b) Real part of the band structure. (c,d) Lifetime of the states. (a,c) Metallic filling factor is .1. (b,d) Metallic filling factor is .6.
Fig. 6.
Fig. 6. The lowest propagating frequency of E-polarized modes for two-component, three-component metallic core and three-component metallic shell photonic crystals plotted as a function of filling factor of the metallic component of the cylinders. The filling factor of the dielectric components is .1.
Fig. 7.
Fig. 7. The eigenvalue spectrum for E-polarization plotted in the complex plane for a metallic core surrounded by a dielectric shell with εi = 12. The filling factor of each component is .1. The first N eigenvalues are plotted in red and have Re(ω) < 0. The second N are in black and have Re(ω) ≈ 0. The third N are in blue with Re(ω) > 0.
Fig. 8.
Fig. 8. The eigenvalue spectrum for E-polarization plotted in the complex plane for a metallic core surrounded by a dielectric shell with εi = 12 – .1i. The filling factor of each component is .1. The first N eigenvalues are plotted in red and have Re(ω) < 0. The second N are in black and have Re(ω) ≈ 0. The third N are in blue with Re(ω) > 0.
Fig. 9.
Fig. 9. The eigenvalue spectrum for E-polarization plotted in the complex plane for a metallic core surrounded by a dielectric shell with εi = 12+ .1i. The filling factor of each component is .1. The first N eigenvalues are plotted in red and have Re(ω) < 0. The second N are in black and have Re(ω) ≈ 0. The third N are in blue with Re(ω) > 0.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=1ωp2ω(ω+iγ).
Ez(x)=GBkGexp(i(k+G)x).
εxω=Gε˜Gωexp(iGx).
ε˜Gω={εbf2+εaf1+εifi,2f1(εaεb)J1(GR)GR+2fi(εiεb)J1[G(R+d)]G(R+d)
(2x2+y2+εxωω2c2)Ez=0.
(k+G)2BkG=ω2c2ε˜0ωBkG+ω2c2GGε˜GGωBkG.
(ξ3Ciγcξ2CξDE)B(k)=0,
(C)GG=(εbf2+εifi+f1)δGG+2f1(1εb)J1(GGR)GGR
+2fi(εiεb)J1[GG(R+d)]GG(R+d);
(D)GG=[(k+G)2+f1ωp2c2]δGG+2f1ωp2c2J1(GGR)GGR;
(E)GG=iγc(k+G)2δGG.
(C)GG=(εaf1+εbf2+fi)δGG+2f1(εaεb)J1(GGR)GGR
+2fi(1εb)J1[GG(R+d)]GG(R+d);
(D)GG=[(k+G)2+fiωp2c2]δGG+2fiωp2c2J1(GGR)GGR;
(0𝕀000𝕀C1EC1D−iγc𝕀)(Bab)=ξ(Bab).
Im[ε(ω)]=γωp2ω3+γ2ω,

Metrics