Abstract

Cryogenic cooling is an effective way of increasing the efficiency in many solid-state lasers. In fiber lasers however, while the efficiency is increased, a reduced reabsorption in combination with reduced homogeneous broadening tends to broaden the linewidth, yielding a low spectral power density of the laser emission. In this work we lock a cryogenically-cooled Yb-doped fiber laser with a volume Bragg grating to overcome this problem and achieve a temporally stable narrow linewidth highly efficient laser. We extract 11.4-W of output power in spectral window of less than 0.4-nm with 14.5-W of launched pump light.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrow linewidth high output-coupling dual VBG-locked Yb-doped fiber laser

Pär Jelger, Valdas Pasiskevicius, and Fredrik Laurell
Opt. Express 18(5) 4980-4985 (2010)

Continuous-wave and passively Q-switched cryogenic Yb:KLu(WO4)2 laser

Petr Navratil, Venkatesan Jambunathan, Samuel Paul David, Fangxin Yue, Josep Maria Serres, Xavier Mateos, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, Valentin Petrov, Antonio Lucianetti, and Tomas Mocek
Opt. Express 25(21) 25886-25893 (2017)

165-W cryogenically cooled Yb:YAG laser

Daniel J. Ripin, Juan R. Ochoa, R. L. Aggarwal, and Tso Yee Fan
Opt. Lett. 29(18) 2154-2156 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
    [Crossref]
  2. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
    [Crossref]
  3. G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673 (1998).
    [Crossref]
  4. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
    [Crossref]
  5. N. A. Brilliant and K. Lagonik, “Thermal effects in a dual-clad ytterbium fiber laser,” Opt. Lett. 26, 1669–1671 (2001).
    [Crossref]
  6. T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
    [Crossref]
  7. A. Seifert, M. Sinther, T. Walther, and E. S. Fry, “Narrow-linewidth, multi-Watt Yb-doped fiber amplifier at 1014.8 am,” Appl. Opt. 45, 7908–7911 (2006).
    [Crossref] [PubMed]
  8. K. Sumimura, H. Yoshida, H. Okada, H. Fujita, and M. Nakatsuka, “Suppression of self pulsing in Yb-doped fiber lasers with cooling by liquid nitrogen,” in Lasers and Electro-Optics - Pacific Rim, 2007. CLEO/Pacific Rim 2007. Conference on, 2007), 1–2.
  9. A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311–317 (2000).
    [Crossref]
  10. P. Jelger and F. Laurell, “Efficient skew-angle cladding-pumped tunable narrow-linewidth Yb-doped fiber laser,” Opt. Lett. 32, 3501–3503 (2007).
    [Crossref] [PubMed]
  11. P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection,” Opt. Express 16, 9507–9512(2008).
    [Crossref] [PubMed]
  12. H. Kiriyama, N. Srinivasan, M. Yamanaka, Y. Izawa, T. Yamanaka, and S. Nakai, “Temperature dependence of emission cross-section of Yb: glass,” Jpn. J. Appl. Phys. 36, 1165–1167 (1997).
    [Crossref]
  13. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
    [Crossref]
  14. M. J. F. Digonnet, Rare-earth-doped fiber lasers and amplifiers (CRC Press, 2001).
    [Crossref]
  15. F. Brunet, Y. Taillon, P. Galarneau, and S. LaRochelle, “A Simple Model Describing Both Self-Mode Locking and Sustained Self-Pulsing in Ytterbium-Doped Ring Fiber Lasers,” J. Lightwave Technol. 23, 2131 (2005).
    [Crossref]
  16. W. Guan and J. R. Marciante, “Complete elimination of self-pulsations in dual-clad ytterbium-doped fiber lasers at all pumping levels,” Opt. Lett. 34, 815–817 (2009).
    [Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (2)

P. Jelger and F. Laurell, “Efficient skew-angle cladding-pumped tunable narrow-linewidth Yb-doped fiber laser,” Opt. Lett. 32, 3501–3503 (2007).
[Crossref] [PubMed]

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
[Crossref]

2006 (1)

2005 (3)

F. Brunet, Y. Taillon, P. Galarneau, and S. LaRochelle, “A Simple Model Describing Both Self-Mode Locking and Sustained Self-Pulsing in Ytterbium-Doped Ring Fiber Lasers,” J. Lightwave Technol. 23, 2131 (2005).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
[Crossref]

2001 (1)

2000 (1)

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311–317 (2000).
[Crossref]

1998 (1)

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673 (1998).
[Crossref]

1997 (2)

H. Kiriyama, N. Srinivasan, M. Yamanaka, Y. Izawa, T. Yamanaka, and S. Nakai, “Temperature dependence of emission cross-section of Yb: glass,” Jpn. J. Appl. Phys. 36, 1165–1167 (1997).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Aggarwal, R. L.

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
[Crossref]

Anderson, J. E.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673 (1998).
[Crossref]

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Brilliant, N. A.

Brown, D. C.

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
[Crossref]

Brunet, F.

Buchwald, M. I.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673 (1998).
[Crossref]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Chartier, T.

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311–317 (2000).
[Crossref]

Clarkson, W. A.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Digonnet, M. J. F.

M. J. F. Digonnet, Rare-earth-doped fiber lasers and amplifiers (CRC Press, 2001).
[Crossref]

Edwards, B. C.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673 (1998).
[Crossref]

Epstein, R. I.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673 (1998).
[Crossref]

Fan, T. Y.

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
[Crossref]

Fry, E. S.

Fujita, H.

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, and M. Nakatsuka, “Suppression of self pulsing in Yb-doped fiber lasers with cooling by liquid nitrogen,” in Lasers and Electro-Optics - Pacific Rim, 2007. CLEO/Pacific Rim 2007. Conference on, 2007), 1–2.

Galarneau, P.

Gavrielides, A.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
[Crossref]

Guan, W.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Hideur, A.

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311–317 (2000).
[Crossref]

Izawa, Y.

H. Kiriyama, N. Srinivasan, M. Yamanaka, Y. Izawa, T. Yamanaka, and S. Nakai, “Temperature dependence of emission cross-section of Yb: glass,” Jpn. J. Appl. Phys. 36, 1165–1167 (1997).
[Crossref]

Jelger, P.

Kiriyama, H.

H. Kiriyama, N. Srinivasan, M. Yamanaka, Y. Izawa, T. Yamanaka, and S. Nakai, “Temperature dependence of emission cross-section of Yb: glass,” Jpn. J. Appl. Phys. 36, 1165–1167 (1997).
[Crossref]

Lagonik, K.

LaRochelle, S.

Laurell, F.

Lei, G.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673 (1998).
[Crossref]

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Marciante, J. R.

Nakai, S.

H. Kiriyama, N. Srinivasan, M. Yamanaka, Y. Izawa, T. Yamanaka, and S. Nakai, “Temperature dependence of emission cross-section of Yb: glass,” Jpn. J. Appl. Phys. 36, 1165–1167 (1997).
[Crossref]

Nakatsuka, M.

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, and M. Nakatsuka, “Suppression of self pulsing in Yb-doped fiber lasers with cooling by liquid nitrogen,” in Lasers and Electro-Optics - Pacific Rim, 2007. CLEO/Pacific Rim 2007. Conference on, 2007), 1–2.

Newell, T. C.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
[Crossref]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Ochoa, J. R.

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
[Crossref]

Okada, H.

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, and M. Nakatsuka, “Suppression of self pulsing in Yb-doped fiber lasers with cooling by liquid nitrogen,” in Lasers and Electro-Optics - Pacific Rim, 2007. CLEO/Pacific Rim 2007. Conference on, 2007), 1–2.

Özkul, C.

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311–317 (2000).
[Crossref]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Peterson, P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
[Crossref]

Ripin, D. J.

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
[Crossref]

Sahu, J. K.

Sanchez, F.

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311–317 (2000).
[Crossref]

Seifert, A.

Sharma, M. P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
[Crossref]

Sinther, M.

Srinivasan, N.

H. Kiriyama, N. Srinivasan, M. Yamanaka, Y. Izawa, T. Yamanaka, and S. Nakai, “Temperature dependence of emission cross-section of Yb: glass,” Jpn. J. Appl. Phys. 36, 1165–1167 (1997).
[Crossref]

Sumimura, K.

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, and M. Nakatsuka, “Suppression of self pulsing in Yb-doped fiber lasers with cooling by liquid nitrogen,” in Lasers and Electro-Optics - Pacific Rim, 2007. CLEO/Pacific Rim 2007. Conference on, 2007), 1–2.

Taillon, Y.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

Walther, T.

Wang, P.

Yamanaka, M.

H. Kiriyama, N. Srinivasan, M. Yamanaka, Y. Izawa, T. Yamanaka, and S. Nakai, “Temperature dependence of emission cross-section of Yb: glass,” Jpn. J. Appl. Phys. 36, 1165–1167 (1997).
[Crossref]

Yamanaka, T.

H. Kiriyama, N. Srinivasan, M. Yamanaka, Y. Izawa, T. Yamanaka, and S. Nakai, “Temperature dependence of emission cross-section of Yb: glass,” Jpn. J. Appl. Phys. 36, 1165–1167 (1997).
[Crossref]

Yoshida, H.

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, and M. Nakatsuka, “Suppression of self pulsing in Yb-doped fiber lasers with cooling by liquid nitrogen,” in Lasers and Electro-Optics - Pacific Rim, 2007. CLEO/Pacific Rim 2007. Conference on, 2007), 1–2.

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
[Crossref]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

H. Kiriyama, N. Srinivasan, M. Yamanaka, Y. Izawa, T. Yamanaka, and S. Nakai, “Temperature dependence of emission cross-section of Yb: glass,” Jpn. J. Appl. Phys. 36, 1165–1167 (1997).
[Crossref]

Opt. Commun. (2)

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
[Crossref]

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311–317 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673 (1998).
[Crossref]

Other (2)

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, and M. Nakatsuka, “Suppression of self pulsing in Yb-doped fiber lasers with cooling by liquid nitrogen,” in Lasers and Electro-Optics - Pacific Rim, 2007. CLEO/Pacific Rim 2007. Conference on, 2007), 1–2.

M. J. F. Digonnet, Rare-earth-doped fiber lasers and amplifiers (CRC Press, 2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup.
Fig. 2.
Fig. 2. (a). Launched power vs. output power for the 4 m fiber using a HR-mirror at LNT and room temperature. (b). Emission spectrum from the 4 m fiber with the HR-mirror at room temperature and at LNT.
Fig. 3.
Fig. 3. (a). Launched power vs. output power for the 11.5 m fiber at LNT using a HR-mirror and a VBG. (b) Emission spectrum from the 11.5 m fiber at LNT with a HR-mirror and a VBG.
Fig. 4.
Fig. 4. (a). Schematic energy level diagram of Yb3+ in silica glass [6] (b). Fractional Boltzmann population of the energy levels in the 2F7/2 manifold for different temperatures.
Fig. 5.
Fig. 5. (a). Emission and absorption cross-section at room temperature from Ref [13]. (b). Gain cross-sections for various inversions at room temperature (black dashed) and at LNT (red) based on data from Ref [6].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g/N=(σemN2σabsN1) / N

Metrics