Abstract

Transmitted light through a diffuse scattering medium includes strongly diffused light (SDL) and weakly scattered light (WSL). To realize clear transillumination imaging through thick body tissue, which is typically more than 10 mm, we developed a technique to extract the WSL component from diffused light. In experiments using a 15-mm-thick scattering medium (μs’ = 1.0/mm), the cross-section of the light propagation area at the center of the medium was confined to a 50% area. This method’s usefulness was demonstrated by transillumination imaging through a 40-mm-thick piece of chicken meat. The possibility of depth evaluation was also verified.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extraction of near-axis scattered light for transillumination imaging

Kazuto Takagi, Yuji Kato, and Koichi Shimizu
Appl. Opt. 48(10) D36-D44 (2009)

Three-dimensional transillumination image reconstruction for small animal with new scattering suppression technique

Trung Nghia Tran, Kohei Yamamoto, Takeshi Namita, Yuji Kato, and Koichi Shimizu
Biomed. Opt. Express 5(5) 1321-1335 (2014)

Near-infrared laser tomographic imaging with right-angled scattered coherent light using an optical heterodyne-detection-based confocal scanning system

Izumi Nishidate, Masaki Goto, Yoshiaki Sasaki, Tetsuya Yuasa, Balasigamani Devaraj, Kyuichi Niizeki, and Takao Akatsuka
Appl. Opt. 46(11) 2123-2130 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
    [Crossref] [PubMed]
  2. S. G. Demos, H. B. Radousky, and R. R. Alfano, “Deep subsurface imaging in tissues using spectral and polarization filtering,” Opt. Express 7, 23–28 (2000).
    [Crossref] [PubMed]
  3. Stephen P. Morgan, Man P. Khong, and Michael G. Somekh, “Effects of polarization state and scatterer concentration on optical imaging through scattering media,” Appl. Opt. 36, 1560–1565 (1997).
    [Crossref] [PubMed]
  4. M. A. Franceschini, K. T. Moesuta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seever, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
    [Crossref] [PubMed]
  5. S. Fantini, S. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: Edge effects correction,” Med. Phys. 23, 149–157 (1996).
    [Crossref] [PubMed]
  6. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in-vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
    [Crossref]
  7. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszcynski, R. Macdonald, P. M. Schlag, and H. H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
    [Crossref] [PubMed]
  8. D. Grosenick, H. Wabnitz, and H. Rinneberg, “Time-resolved imaging of solid phantoms for optical mammography,” Appl. Opt. 36, 221–231 (1997).
    [Crossref] [PubMed]
  9. A. O. Wist, P. P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–757 (1993).
    [Crossref] [PubMed]
  10. S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
    [Crossref]
  11. K. Shimizu and M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383–388 (2000).
    [Crossref]
  12. K. Takagi, Y. Kato, and K. Shimizu, “CW detection of near-axis scattered light for transillumination imaging,” in Biomedical Optics Topical Meeting, Technical Digest (CD) (Optical Society of America, 2006), paper SH67.
  13. K. Shimizu, K. Tochio, and Y. Kato, “Improvement of transcutaneous fluorescent images with a depth-dependent point-spread function,” Appl. Opt. 44, 2154–2161 (2005).
    [Crossref] [PubMed]

2005 (1)

2003 (2)

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszcynski, R. Macdonald, P. M. Schlag, and H. H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
[Crossref] [PubMed]

2000 (2)

S. G. Demos, H. B. Radousky, and R. R. Alfano, “Deep subsurface imaging in tissues using spectral and polarization filtering,” Opt. Express 7, 23–28 (2000).
[Crossref] [PubMed]

K. Shimizu and M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383–388 (2000).
[Crossref]

1999 (1)

1997 (4)

1996 (1)

S. Fantini, S. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: Edge effects correction,” Med. Phys. 23, 149–157 (1996).
[Crossref] [PubMed]

1993 (1)

A. O. Wist, P. P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–757 (1993).
[Crossref] [PubMed]

Akatsuka, T.

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

Alfano, R. R.

Demos, S. G.

Devaraj, B.

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

Emori, R.

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

Fantini, S.

M. A. Franceschini, K. T. Moesuta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seever, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[Crossref] [PubMed]

S. Fantini, S. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: Edge effects correction,” Med. Phys. 23, 149–157 (1996).
[Crossref] [PubMed]

Fatouros, P. P.

A. O. Wist, P. P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–757 (1993).
[Crossref] [PubMed]

Franceschini, M. A.

M. A. Franceschini, K. T. Moesuta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seever, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[Crossref] [PubMed]

Franceschini, S. A.

S. Fantini, S. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: Edge effects correction,” Med. Phys. 23, 149–157 (1996).
[Crossref] [PubMed]

Gaida, G.

M. A. Franceschini, K. T. Moesuta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seever, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[Crossref] [PubMed]

S. Fantini, S. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: Edge effects correction,” Med. Phys. 23, 149–157 (1996).
[Crossref] [PubMed]

Gratton, E.

M. A. Franceschini, K. T. Moesuta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seever, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[Crossref] [PubMed]

S. Fantini, S. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: Edge effects correction,” Med. Phys. 23, 149–157 (1996).
[Crossref] [PubMed]

Grosenick, D.

Herr, S. L.

A. O. Wist, P. P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–757 (1993).
[Crossref] [PubMed]

Inage, H.

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

Ishikawa, A.

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

Jess, H.

M. A. Franceschini, K. T. Moesuta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seever, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[Crossref] [PubMed]

S. Fantini, S. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: Edge effects correction,” Med. Phys. 23, 149–157 (1996).
[Crossref] [PubMed]

Kaschke, M.

M. A. Franceschini, K. T. Moesuta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seever, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[Crossref] [PubMed]

S. Fantini, S. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: Edge effects correction,” Med. Phys. 23, 149–157 (1996).
[Crossref] [PubMed]

Kato, Y.

K. Shimizu, K. Tochio, and Y. Kato, “Improvement of transcutaneous fluorescent images with a depth-dependent point-spread function,” Appl. Opt. 44, 2154–2161 (2005).
[Crossref] [PubMed]

K. Takagi, Y. Kato, and K. Shimizu, “CW detection of near-axis scattered light for transillumination imaging,” in Biomedical Optics Topical Meeting, Technical Digest (CD) (Optical Society of America, 2006), paper SH67.

Khong, Man P.

Kitama, M.

K. Shimizu and M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383–388 (2000).
[Crossref]

Macdonald, R.

Mantulin, W. W.

M. A. Franceschini, K. T. Moesuta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seever, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[Crossref] [PubMed]

S. Fantini, S. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: Edge effects correction,” Med. Phys. 23, 149–157 (1996).
[Crossref] [PubMed]

Moesta, K. T.

Moesuta, K. T.

M. A. Franceschini, K. T. Moesuta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seever, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[Crossref] [PubMed]

Morgan, Stephen P.

Mucke, J.

Radousky, H. B.

Rinneberg, H.

Rinneberg, H. H.

Sasaki, Y.

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

Schlag, P. M.

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszcynski, R. Macdonald, P. M. Schlag, and H. H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003).
[Crossref] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in-vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[Crossref]

M. A. Franceschini, K. T. Moesuta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seever, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[Crossref] [PubMed]

S. Fantini, S. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: Edge effects correction,” Med. Phys. 23, 149–157 (1996).
[Crossref] [PubMed]

Seever, M.

M. A. Franceschini, K. T. Moesuta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seever, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[Crossref] [PubMed]

Shimizu, K.

K. Shimizu, K. Tochio, and Y. Kato, “Improvement of transcutaneous fluorescent images with a depth-dependent point-spread function,” Appl. Opt. 44, 2154–2161 (2005).
[Crossref] [PubMed]

K. Shimizu and M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383–388 (2000).
[Crossref]

K. Takagi, Y. Kato, and K. Shimizu, “CW detection of near-axis scattered light for transillumination imaging,” in Biomedical Optics Topical Meeting, Technical Digest (CD) (Optical Society of America, 2006), paper SH67.

Somekh, Michael G.

Stroszcynski, C.

Suzuki, J.

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

Takagi, K.

K. Takagi, Y. Kato, and K. Shimizu, “CW detection of near-axis scattered light for transillumination imaging,” in Biomedical Optics Topical Meeting, Technical Digest (CD) (Optical Society of America, 2006), paper SH67.

Takagi, M.

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

Taniguchi, H.

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

Tanosaki, S.

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

Tochio, K.

Wabnitz, H.

Wist, A. O.

A. O. Wist, P. P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–757 (1993).
[Crossref] [PubMed]

Yuasa, T.

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

Appl. Opt. (6)

IEEE Trans. Med. Imaging (1)

A. O. Wist, P. P. Fatouros, and S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–757 (1993).
[Crossref] [PubMed]

Med. Phys. (1)

S. Fantini, S. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: Edge effects correction,” Med. Phys. 23, 149–157 (1996).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Rev. (2)

S. Tanosaki, M. Takagi, Y. Sasaki, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “In vivo laser tomographic imaging of mouse leg with coherent detection imaging method,” Opt. Rev. 10, 447–451 (2003).
[Crossref]

K. Shimizu and M. Kitama, “Fundamental study on near-axis scattered light and its application to optical computed tomography,” Opt. Rev. 7, 383–388 (2000).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

M. A. Franceschini, K. T. Moesuta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seever, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[Crossref] [PubMed]

Other (1)

K. Takagi, Y. Kato, and K. Shimizu, “CW detection of near-axis scattered light for transillumination imaging,” in Biomedical Optics Topical Meeting, Technical Digest (CD) (Optical Society of America, 2006), paper SH67.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Propagation area in a scattering medium: (a) ballistic component, (b) NASL component, (c) diffused light component.
Fig. 2.
Fig. 2. Principle to extract weakly scattered light: (a) without diffuser, (b) with diffuser.
Fig. 3.
Fig. 3. Experimental setup to extract weakly scattered light in CW measurement.
Fig. 4.
Fig. 4. Images through scattering medium (μs L= 15): (a) without diffuser, (b) with diffuser, (c) subtracted image.
Fig. 5.
Fig. 5. Intensity distributions along white broken lines in Figs. 4(a)–4(c).
Fig. 6.
Fig. 6. Temporal profiles of transmitted light through a scattering medium.
Fig. 7.
Fig. 7. Experimental setup to measure propagation area.
Fig. 8.
Fig. 8. Schematic diagram of measurement procedure: (a) movement of knife-edge plate, (b) measured transmitted intensity.
Fig. 9.
Fig. 9. Results of beam profiling: (a) beam profile at 7.5 mm depth from the front surface, (b) measured width of the propagation area.
Fig. 10.
Fig. 10. Width ratios of propagation area before and after subtraction.
Fig. 11.
Fig. 11. Images through scattering medium (μs L= 30) with absorbers: (a) without diffuser, (b) with diffuser, (c) subtracted image.
Fig. 12.
Fig. 12. Intensity distributions of received signal through scattering medium (μs L= 30) with absorbers.
Fig. 13.
Fig. 13. Images through 40 mm chicken meat with a 9-mm-wide absorber: (a) without diffuser, (b) subtracted image.
Fig. 14.
Fig. 14. Improvement ratios of contrast after subtraction in cases of front incidence and rear incidence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

IWSL(x,y)=I1(x,y)αI2(x,y).

Metrics