Abstract

In this study we have used fluorescence spectroscopy to determine the post-mortem interval. Conventional methods in forensic medicine involve tissue or body fluids sampling and laboratory tests, which are often time demanding and may depend on expensive analysis. The presented method consists in using time-dependent variations on the fluorescence spectrum and its correlation with the time elapsed after regular metabolic activity cessation. This new approach addresses unmet needs for post-mortem interval determination in forensic medicine, by providing rapid and in situ measurements that shows improved time resolution relative to existing methods.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence spectral imaging for characterization of tissue based on multivariate statistical analysis

Jianan Y. Qu, Hanpeng Chang, and Shengming Xiong
J. Opt. Soc. Am. A 19(9) 1823-1831 (2002)

Photonic crystal characterization by FDTD and principal component analysis

José M. López-Alonso, José M. Rico-García, and Javier Alda
Opt. Express 12(10) 2176-2186 (2004)

Imaging of laser-excited tissue autofluorescence bleaching rates

Janis Spigulis, Alexey Lihachev, and Renars Erts
Appl. Opt. 48(10) D163-D168 (2009)

References

  • View by:
  • |
  • |
  • |

  1. P. Vanezis and O. Trujillo, “Evaluation of hypostasis using a colorimeter measuring system and its application to assessment of the post-mortem interval (time of death),” Forensic Sci. Int. 78(1), 19–28 (1996).
    [Crossref] [PubMed]
  2. E. Scheurer, M. Ith, D. Dietrich, R. Kreis, J. Hüsler, R. Dirnhofer, and C. Boesch, “Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain,” NMR Biomed. 18(3), 163–172 (2005).
    [Crossref]
  3. A. J. Sabucedo and K. G. Furton, “Estimation of postmortem interval using the protein marker cardiac Troponin I,” Forensic Sci. Int. 134(1), 11–16 (2003).
    [Crossref] [PubMed]
  4. L. A. Johnson and J. A. J. Ferris, “Analysis of postmortem DNA degradation by single-cell gel electrophoresis,” Forensic Sci. Int. 126(1), 43–47 (2002).
    [Crossref] [PubMed]
  5. A. D. Stan, S. Ghose, X. M. Gao, R. C. Roberts, K. Lewis-Amezcua, K. J. Hatanpaa, and C. A. Tamminga, “Human postmortem tissue: what quality markers matter?” Brain Res. 1123(1), 1–11 (2006).
    [Crossref] [PubMed]
  6. B. Zhou, L. Zhang, G. Zhang, X. Zhang, and X. Jiang, “The determination of potassium concentration in vitreous humor by low pressure ion chromatography and its application in the estimation of postmortem interval,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852(1-2), 278–281 (2007).
    [Crossref] [PubMed]
  7. B. Madea and A. Rödig, “Time of death dependent criteria in vitreous humor: accuracy of estimating the time since death,” Forensic Sci. Int. 164(2-3), 87–92 (2006).
    [Crossref] [PubMed]
  8. D. Querido, “A preliminary investigation into postmortem changes in skinfold impedance during the early postmortem period in rats,” Forensic Sci. Int. 96(2-3), 107–114 (1998).
    [Crossref] [PubMed]
  9. M. J. Prieto-Castelló, J. P. Hernández del Rincón, C. Pérez-Sirvent, P. Alvarez-Jiménez, M. D. Pérez-Cárceles, E. Osuna, and A. Luna, “Application of biochemical and X-ray diffraction analyses to establish the postmortem interval,” Forensic Sci. Int. 172(2-3), 112–118 (2007).
    [Crossref] [PubMed]
  10. T. E. Huntington, L. G. Higley, and F. P. Baxendale, “Maggot development during morgue storage and its effect on estimating the post-mortem interval,” J. Forensic Sci. 52(2), 453–458 (2007).
    [Crossref] [PubMed]
  11. J. Amendt, C. P. Campobasso, E. Gaudry, C. Reiter, H. N. LeBlanc, M. J. Hall, and European Association for Forensic Entomology, “Best practice in forensic entomology--standards and guidelines,” Int. J. Legal Med. 121(2), 90–104 (2007).
    [Crossref]
  12. G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68(5), 603–632 (1998).
    [PubMed]
  13. V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188–1207 (2000).
  14. G. K. Stookey, “The evolution of caries detection,” Dimensions of Dental Hygiene 10, 12–14 (2003).
  15. C. Meller, C. Heyduck, S. Tranaeus, and C. Splieth, “A new in vivo method for measuring caries activity using quantitative light-induced fluorescence,” Caries Res. 40(2), 90–96 (2006).
    [Crossref] [PubMed]
  16. A. G. Doukas, M. Bamberg, R. Gillies, R. Evans, and N. Kollias, “Spectroscopic determination of skin viability. A predictor of postmortem interval,” J. Forensic Sci. 45(1), 36–41 (2000).
    [PubMed]
  17. A. M. C. Davies and T. Fearn, “Back to basics: the principles of principal component analysis,” Spectroscopy Europe 16(6), 20–23 (2005).
  18. L. F. Costa, Shape analysis and classification: theory and practice. (Crc Press, 2001).

2007 (4)

M. J. Prieto-Castelló, J. P. Hernández del Rincón, C. Pérez-Sirvent, P. Alvarez-Jiménez, M. D. Pérez-Cárceles, E. Osuna, and A. Luna, “Application of biochemical and X-ray diffraction analyses to establish the postmortem interval,” Forensic Sci. Int. 172(2-3), 112–118 (2007).
[Crossref] [PubMed]

T. E. Huntington, L. G. Higley, and F. P. Baxendale, “Maggot development during morgue storage and its effect on estimating the post-mortem interval,” J. Forensic Sci. 52(2), 453–458 (2007).
[Crossref] [PubMed]

J. Amendt, C. P. Campobasso, E. Gaudry, C. Reiter, H. N. LeBlanc, M. J. Hall, and European Association for Forensic Entomology, “Best practice in forensic entomology--standards and guidelines,” Int. J. Legal Med. 121(2), 90–104 (2007).
[Crossref]

B. Zhou, L. Zhang, G. Zhang, X. Zhang, and X. Jiang, “The determination of potassium concentration in vitreous humor by low pressure ion chromatography and its application in the estimation of postmortem interval,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852(1-2), 278–281 (2007).
[Crossref] [PubMed]

2006 (3)

B. Madea and A. Rödig, “Time of death dependent criteria in vitreous humor: accuracy of estimating the time since death,” Forensic Sci. Int. 164(2-3), 87–92 (2006).
[Crossref] [PubMed]

C. Meller, C. Heyduck, S. Tranaeus, and C. Splieth, “A new in vivo method for measuring caries activity using quantitative light-induced fluorescence,” Caries Res. 40(2), 90–96 (2006).
[Crossref] [PubMed]

A. D. Stan, S. Ghose, X. M. Gao, R. C. Roberts, K. Lewis-Amezcua, K. J. Hatanpaa, and C. A. Tamminga, “Human postmortem tissue: what quality markers matter?” Brain Res. 1123(1), 1–11 (2006).
[Crossref] [PubMed]

2005 (2)

E. Scheurer, M. Ith, D. Dietrich, R. Kreis, J. Hüsler, R. Dirnhofer, and C. Boesch, “Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain,” NMR Biomed. 18(3), 163–172 (2005).
[Crossref]

A. M. C. Davies and T. Fearn, “Back to basics: the principles of principal component analysis,” Spectroscopy Europe 16(6), 20–23 (2005).

2003 (2)

G. K. Stookey, “The evolution of caries detection,” Dimensions of Dental Hygiene 10, 12–14 (2003).

A. J. Sabucedo and K. G. Furton, “Estimation of postmortem interval using the protein marker cardiac Troponin I,” Forensic Sci. Int. 134(1), 11–16 (2003).
[Crossref] [PubMed]

2002 (1)

L. A. Johnson and J. A. J. Ferris, “Analysis of postmortem DNA degradation by single-cell gel electrophoresis,” Forensic Sci. Int. 126(1), 43–47 (2002).
[Crossref] [PubMed]

2000 (2)

V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188–1207 (2000).

A. G. Doukas, M. Bamberg, R. Gillies, R. Evans, and N. Kollias, “Spectroscopic determination of skin viability. A predictor of postmortem interval,” J. Forensic Sci. 45(1), 36–41 (2000).
[PubMed]

1998 (2)

D. Querido, “A preliminary investigation into postmortem changes in skinfold impedance during the early postmortem period in rats,” Forensic Sci. Int. 96(2-3), 107–114 (1998).
[Crossref] [PubMed]

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68(5), 603–632 (1998).
[PubMed]

1996 (1)

P. Vanezis and O. Trujillo, “Evaluation of hypostasis using a colorimeter measuring system and its application to assessment of the post-mortem interval (time of death),” Forensic Sci. Int. 78(1), 19–28 (1996).
[Crossref] [PubMed]

Alvarez-Jiménez, P.

M. J. Prieto-Castelló, J. P. Hernández del Rincón, C. Pérez-Sirvent, P. Alvarez-Jiménez, M. D. Pérez-Cárceles, E. Osuna, and A. Luna, “Application of biochemical and X-ray diffraction analyses to establish the postmortem interval,” Forensic Sci. Int. 172(2-3), 112–118 (2007).
[Crossref] [PubMed]

Amendt, J.

J. Amendt, C. P. Campobasso, E. Gaudry, C. Reiter, H. N. LeBlanc, M. J. Hall, and European Association for Forensic Entomology, “Best practice in forensic entomology--standards and guidelines,” Int. J. Legal Med. 121(2), 90–104 (2007).
[Crossref]

Bamberg, M.

A. G. Doukas, M. Bamberg, R. Gillies, R. Evans, and N. Kollias, “Spectroscopic determination of skin viability. A predictor of postmortem interval,” J. Forensic Sci. 45(1), 36–41 (2000).
[PubMed]

Baxendale, F. P.

T. E. Huntington, L. G. Higley, and F. P. Baxendale, “Maggot development during morgue storage and its effect on estimating the post-mortem interval,” J. Forensic Sci. 52(2), 453–458 (2007).
[Crossref] [PubMed]

Boesch, C.

E. Scheurer, M. Ith, D. Dietrich, R. Kreis, J. Hüsler, R. Dirnhofer, and C. Boesch, “Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain,” NMR Biomed. 18(3), 163–172 (2005).
[Crossref]

Campobasso, C. P.

J. Amendt, C. P. Campobasso, E. Gaudry, C. Reiter, H. N. LeBlanc, M. J. Hall, and European Association for Forensic Entomology, “Best practice in forensic entomology--standards and guidelines,” Int. J. Legal Med. 121(2), 90–104 (2007).
[Crossref]

Davies, A. M. C.

A. M. C. Davies and T. Fearn, “Back to basics: the principles of principal component analysis,” Spectroscopy Europe 16(6), 20–23 (2005).

Dietrich, D.

E. Scheurer, M. Ith, D. Dietrich, R. Kreis, J. Hüsler, R. Dirnhofer, and C. Boesch, “Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain,” NMR Biomed. 18(3), 163–172 (2005).
[Crossref]

Dirnhofer, R.

E. Scheurer, M. Ith, D. Dietrich, R. Kreis, J. Hüsler, R. Dirnhofer, and C. Boesch, “Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain,” NMR Biomed. 18(3), 163–172 (2005).
[Crossref]

Doukas, A. G.

A. G. Doukas, M. Bamberg, R. Gillies, R. Evans, and N. Kollias, “Spectroscopic determination of skin viability. A predictor of postmortem interval,” J. Forensic Sci. 45(1), 36–41 (2000).
[PubMed]

Evans, R.

A. G. Doukas, M. Bamberg, R. Gillies, R. Evans, and N. Kollias, “Spectroscopic determination of skin viability. A predictor of postmortem interval,” J. Forensic Sci. 45(1), 36–41 (2000).
[PubMed]

Fearn, T.

A. M. C. Davies and T. Fearn, “Back to basics: the principles of principal component analysis,” Spectroscopy Europe 16(6), 20–23 (2005).

Ferris, J. A. J.

L. A. Johnson and J. A. J. Ferris, “Analysis of postmortem DNA degradation by single-cell gel electrophoresis,” Forensic Sci. Int. 126(1), 43–47 (2002).
[Crossref] [PubMed]

Furton, K. G.

A. J. Sabucedo and K. G. Furton, “Estimation of postmortem interval using the protein marker cardiac Troponin I,” Forensic Sci. Int. 134(1), 11–16 (2003).
[Crossref] [PubMed]

Gao, X. M.

A. D. Stan, S. Ghose, X. M. Gao, R. C. Roberts, K. Lewis-Amezcua, K. J. Hatanpaa, and C. A. Tamminga, “Human postmortem tissue: what quality markers matter?” Brain Res. 1123(1), 1–11 (2006).
[Crossref] [PubMed]

Gaudry, E.

J. Amendt, C. P. Campobasso, E. Gaudry, C. Reiter, H. N. LeBlanc, M. J. Hall, and European Association for Forensic Entomology, “Best practice in forensic entomology--standards and guidelines,” Int. J. Legal Med. 121(2), 90–104 (2007).
[Crossref]

Ghose, S.

A. D. Stan, S. Ghose, X. M. Gao, R. C. Roberts, K. Lewis-Amezcua, K. J. Hatanpaa, and C. A. Tamminga, “Human postmortem tissue: what quality markers matter?” Brain Res. 1123(1), 1–11 (2006).
[Crossref] [PubMed]

Gillies, R.

A. G. Doukas, M. Bamberg, R. Gillies, R. Evans, and N. Kollias, “Spectroscopic determination of skin viability. A predictor of postmortem interval,” J. Forensic Sci. 45(1), 36–41 (2000).
[PubMed]

Hall, M. J.

J. Amendt, C. P. Campobasso, E. Gaudry, C. Reiter, H. N. LeBlanc, M. J. Hall, and European Association for Forensic Entomology, “Best practice in forensic entomology--standards and guidelines,” Int. J. Legal Med. 121(2), 90–104 (2007).
[Crossref]

Hatanpaa, K. J.

A. D. Stan, S. Ghose, X. M. Gao, R. C. Roberts, K. Lewis-Amezcua, K. J. Hatanpaa, and C. A. Tamminga, “Human postmortem tissue: what quality markers matter?” Brain Res. 1123(1), 1–11 (2006).
[Crossref] [PubMed]

Hernández del Rincón, J. P.

M. J. Prieto-Castelló, J. P. Hernández del Rincón, C. Pérez-Sirvent, P. Alvarez-Jiménez, M. D. Pérez-Cárceles, E. Osuna, and A. Luna, “Application of biochemical and X-ray diffraction analyses to establish the postmortem interval,” Forensic Sci. Int. 172(2-3), 112–118 (2007).
[Crossref] [PubMed]

Heyduck, C.

C. Meller, C. Heyduck, S. Tranaeus, and C. Splieth, “A new in vivo method for measuring caries activity using quantitative light-induced fluorescence,” Caries Res. 40(2), 90–96 (2006).
[Crossref] [PubMed]

Higley, L. G.

T. E. Huntington, L. G. Higley, and F. P. Baxendale, “Maggot development during morgue storage and its effect on estimating the post-mortem interval,” J. Forensic Sci. 52(2), 453–458 (2007).
[Crossref] [PubMed]

Huntington, T. E.

T. E. Huntington, L. G. Higley, and F. P. Baxendale, “Maggot development during morgue storage and its effect on estimating the post-mortem interval,” J. Forensic Sci. 52(2), 453–458 (2007).
[Crossref] [PubMed]

Hüsler, J.

E. Scheurer, M. Ith, D. Dietrich, R. Kreis, J. Hüsler, R. Dirnhofer, and C. Boesch, “Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain,” NMR Biomed. 18(3), 163–172 (2005).
[Crossref]

Ith, M.

E. Scheurer, M. Ith, D. Dietrich, R. Kreis, J. Hüsler, R. Dirnhofer, and C. Boesch, “Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain,” NMR Biomed. 18(3), 163–172 (2005).
[Crossref]

Jiang, X.

B. Zhou, L. Zhang, G. Zhang, X. Zhang, and X. Jiang, “The determination of potassium concentration in vitreous humor by low pressure ion chromatography and its application in the estimation of postmortem interval,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852(1-2), 278–281 (2007).
[Crossref] [PubMed]

Johnson, L. A.

L. A. Johnson and J. A. J. Ferris, “Analysis of postmortem DNA degradation by single-cell gel electrophoresis,” Forensic Sci. Int. 126(1), 43–47 (2002).
[Crossref] [PubMed]

Kollias, N.

A. G. Doukas, M. Bamberg, R. Gillies, R. Evans, and N. Kollias, “Spectroscopic determination of skin viability. A predictor of postmortem interval,” J. Forensic Sci. 45(1), 36–41 (2000).
[PubMed]

Konov, V. I.

V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188–1207 (2000).

Kreis, R.

E. Scheurer, M. Ith, D. Dietrich, R. Kreis, J. Hüsler, R. Dirnhofer, and C. Boesch, “Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain,” NMR Biomed. 18(3), 163–172 (2005).
[Crossref]

LeBlanc, H. N.

J. Amendt, C. P. Campobasso, E. Gaudry, C. Reiter, H. N. LeBlanc, M. J. Hall, and European Association for Forensic Entomology, “Best practice in forensic entomology--standards and guidelines,” Int. J. Legal Med. 121(2), 90–104 (2007).
[Crossref]

Lewis-Amezcua, K.

A. D. Stan, S. Ghose, X. M. Gao, R. C. Roberts, K. Lewis-Amezcua, K. J. Hatanpaa, and C. A. Tamminga, “Human postmortem tissue: what quality markers matter?” Brain Res. 1123(1), 1–11 (2006).
[Crossref] [PubMed]

Loschenov, V. B.

V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188–1207 (2000).

Luna, A.

M. J. Prieto-Castelló, J. P. Hernández del Rincón, C. Pérez-Sirvent, P. Alvarez-Jiménez, M. D. Pérez-Cárceles, E. Osuna, and A. Luna, “Application of biochemical and X-ray diffraction analyses to establish the postmortem interval,” Forensic Sci. Int. 172(2-3), 112–118 (2007).
[Crossref] [PubMed]

Madea, B.

B. Madea and A. Rödig, “Time of death dependent criteria in vitreous humor: accuracy of estimating the time since death,” Forensic Sci. Int. 164(2-3), 87–92 (2006).
[Crossref] [PubMed]

Meller, C.

C. Meller, C. Heyduck, S. Tranaeus, and C. Splieth, “A new in vivo method for measuring caries activity using quantitative light-induced fluorescence,” Caries Res. 40(2), 90–96 (2006).
[Crossref] [PubMed]

Osuna, E.

M. J. Prieto-Castelló, J. P. Hernández del Rincón, C. Pérez-Sirvent, P. Alvarez-Jiménez, M. D. Pérez-Cárceles, E. Osuna, and A. Luna, “Application of biochemical and X-ray diffraction analyses to establish the postmortem interval,” Forensic Sci. Int. 172(2-3), 112–118 (2007).
[Crossref] [PubMed]

Pérez-Cárceles, M. D.

M. J. Prieto-Castelló, J. P. Hernández del Rincón, C. Pérez-Sirvent, P. Alvarez-Jiménez, M. D. Pérez-Cárceles, E. Osuna, and A. Luna, “Application of biochemical and X-ray diffraction analyses to establish the postmortem interval,” Forensic Sci. Int. 172(2-3), 112–118 (2007).
[Crossref] [PubMed]

Pérez-Sirvent, C.

M. J. Prieto-Castelló, J. P. Hernández del Rincón, C. Pérez-Sirvent, P. Alvarez-Jiménez, M. D. Pérez-Cárceles, E. Osuna, and A. Luna, “Application of biochemical and X-ray diffraction analyses to establish the postmortem interval,” Forensic Sci. Int. 172(2-3), 112–118 (2007).
[Crossref] [PubMed]

Prieto-Castelló, M. J.

M. J. Prieto-Castelló, J. P. Hernández del Rincón, C. Pérez-Sirvent, P. Alvarez-Jiménez, M. D. Pérez-Cárceles, E. Osuna, and A. Luna, “Application of biochemical and X-ray diffraction analyses to establish the postmortem interval,” Forensic Sci. Int. 172(2-3), 112–118 (2007).
[Crossref] [PubMed]

Prokhorov, A. M.

V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188–1207 (2000).

Querido, D.

D. Querido, “A preliminary investigation into postmortem changes in skinfold impedance during the early postmortem period in rats,” Forensic Sci. Int. 96(2-3), 107–114 (1998).
[Crossref] [PubMed]

Reiter, C.

J. Amendt, C. P. Campobasso, E. Gaudry, C. Reiter, H. N. LeBlanc, M. J. Hall, and European Association for Forensic Entomology, “Best practice in forensic entomology--standards and guidelines,” Int. J. Legal Med. 121(2), 90–104 (2007).
[Crossref]

Roberts, R. C.

A. D. Stan, S. Ghose, X. M. Gao, R. C. Roberts, K. Lewis-Amezcua, K. J. Hatanpaa, and C. A. Tamminga, “Human postmortem tissue: what quality markers matter?” Brain Res. 1123(1), 1–11 (2006).
[Crossref] [PubMed]

Rödig, A.

B. Madea and A. Rödig, “Time of death dependent criteria in vitreous humor: accuracy of estimating the time since death,” Forensic Sci. Int. 164(2-3), 87–92 (2006).
[Crossref] [PubMed]

Sabucedo, A. J.

A. J. Sabucedo and K. G. Furton, “Estimation of postmortem interval using the protein marker cardiac Troponin I,” Forensic Sci. Int. 134(1), 11–16 (2003).
[Crossref] [PubMed]

Scheurer, E.

E. Scheurer, M. Ith, D. Dietrich, R. Kreis, J. Hüsler, R. Dirnhofer, and C. Boesch, “Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain,” NMR Biomed. 18(3), 163–172 (2005).
[Crossref]

Splieth, C.

C. Meller, C. Heyduck, S. Tranaeus, and C. Splieth, “A new in vivo method for measuring caries activity using quantitative light-induced fluorescence,” Caries Res. 40(2), 90–96 (2006).
[Crossref] [PubMed]

Stan, A. D.

A. D. Stan, S. Ghose, X. M. Gao, R. C. Roberts, K. Lewis-Amezcua, K. J. Hatanpaa, and C. A. Tamminga, “Human postmortem tissue: what quality markers matter?” Brain Res. 1123(1), 1–11 (2006).
[Crossref] [PubMed]

Star, W. M.

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68(5), 603–632 (1998).
[PubMed]

Stookey, G. K.

G. K. Stookey, “The evolution of caries detection,” Dimensions of Dental Hygiene 10, 12–14 (2003).

Tamminga, C. A.

A. D. Stan, S. Ghose, X. M. Gao, R. C. Roberts, K. Lewis-Amezcua, K. J. Hatanpaa, and C. A. Tamminga, “Human postmortem tissue: what quality markers matter?” Brain Res. 1123(1), 1–11 (2006).
[Crossref] [PubMed]

Tranaeus, S.

C. Meller, C. Heyduck, S. Tranaeus, and C. Splieth, “A new in vivo method for measuring caries activity using quantitative light-induced fluorescence,” Caries Res. 40(2), 90–96 (2006).
[Crossref] [PubMed]

Trujillo, O.

P. Vanezis and O. Trujillo, “Evaluation of hypostasis using a colorimeter measuring system and its application to assessment of the post-mortem interval (time of death),” Forensic Sci. Int. 78(1), 19–28 (1996).
[Crossref] [PubMed]

Vanezis, P.

P. Vanezis and O. Trujillo, “Evaluation of hypostasis using a colorimeter measuring system and its application to assessment of the post-mortem interval (time of death),” Forensic Sci. Int. 78(1), 19–28 (1996).
[Crossref] [PubMed]

Wagnières, G. A.

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68(5), 603–632 (1998).
[PubMed]

Wilson, B. C.

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68(5), 603–632 (1998).
[PubMed]

Zhang, G.

B. Zhou, L. Zhang, G. Zhang, X. Zhang, and X. Jiang, “The determination of potassium concentration in vitreous humor by low pressure ion chromatography and its application in the estimation of postmortem interval,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852(1-2), 278–281 (2007).
[Crossref] [PubMed]

Zhang, L.

B. Zhou, L. Zhang, G. Zhang, X. Zhang, and X. Jiang, “The determination of potassium concentration in vitreous humor by low pressure ion chromatography and its application in the estimation of postmortem interval,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852(1-2), 278–281 (2007).
[Crossref] [PubMed]

Zhang, X.

B. Zhou, L. Zhang, G. Zhang, X. Zhang, and X. Jiang, “The determination of potassium concentration in vitreous humor by low pressure ion chromatography and its application in the estimation of postmortem interval,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852(1-2), 278–281 (2007).
[Crossref] [PubMed]

Zhou, B.

B. Zhou, L. Zhang, G. Zhang, X. Zhang, and X. Jiang, “The determination of potassium concentration in vitreous humor by low pressure ion chromatography and its application in the estimation of postmortem interval,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852(1-2), 278–281 (2007).
[Crossref] [PubMed]

Brain Res. (1)

A. D. Stan, S. Ghose, X. M. Gao, R. C. Roberts, K. Lewis-Amezcua, K. J. Hatanpaa, and C. A. Tamminga, “Human postmortem tissue: what quality markers matter?” Brain Res. 1123(1), 1–11 (2006).
[Crossref] [PubMed]

Caries Res. (1)

C. Meller, C. Heyduck, S. Tranaeus, and C. Splieth, “A new in vivo method for measuring caries activity using quantitative light-induced fluorescence,” Caries Res. 40(2), 90–96 (2006).
[Crossref] [PubMed]

Dimensions of Dental Hygiene (1)

G. K. Stookey, “The evolution of caries detection,” Dimensions of Dental Hygiene 10, 12–14 (2003).

Forensic Sci. Int. (6)

P. Vanezis and O. Trujillo, “Evaluation of hypostasis using a colorimeter measuring system and its application to assessment of the post-mortem interval (time of death),” Forensic Sci. Int. 78(1), 19–28 (1996).
[Crossref] [PubMed]

A. J. Sabucedo and K. G. Furton, “Estimation of postmortem interval using the protein marker cardiac Troponin I,” Forensic Sci. Int. 134(1), 11–16 (2003).
[Crossref] [PubMed]

L. A. Johnson and J. A. J. Ferris, “Analysis of postmortem DNA degradation by single-cell gel electrophoresis,” Forensic Sci. Int. 126(1), 43–47 (2002).
[Crossref] [PubMed]

B. Madea and A. Rödig, “Time of death dependent criteria in vitreous humor: accuracy of estimating the time since death,” Forensic Sci. Int. 164(2-3), 87–92 (2006).
[Crossref] [PubMed]

D. Querido, “A preliminary investigation into postmortem changes in skinfold impedance during the early postmortem period in rats,” Forensic Sci. Int. 96(2-3), 107–114 (1998).
[Crossref] [PubMed]

M. J. Prieto-Castelló, J. P. Hernández del Rincón, C. Pérez-Sirvent, P. Alvarez-Jiménez, M. D. Pérez-Cárceles, E. Osuna, and A. Luna, “Application of biochemical and X-ray diffraction analyses to establish the postmortem interval,” Forensic Sci. Int. 172(2-3), 112–118 (2007).
[Crossref] [PubMed]

Int. J. Legal Med. (1)

J. Amendt, C. P. Campobasso, E. Gaudry, C. Reiter, H. N. LeBlanc, M. J. Hall, and European Association for Forensic Entomology, “Best practice in forensic entomology--standards and guidelines,” Int. J. Legal Med. 121(2), 90–104 (2007).
[Crossref]

J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. (1)

B. Zhou, L. Zhang, G. Zhang, X. Zhang, and X. Jiang, “The determination of potassium concentration in vitreous humor by low pressure ion chromatography and its application in the estimation of postmortem interval,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852(1-2), 278–281 (2007).
[Crossref] [PubMed]

J. Forensic Sci. (2)

A. G. Doukas, M. Bamberg, R. Gillies, R. Evans, and N. Kollias, “Spectroscopic determination of skin viability. A predictor of postmortem interval,” J. Forensic Sci. 45(1), 36–41 (2000).
[PubMed]

T. E. Huntington, L. G. Higley, and F. P. Baxendale, “Maggot development during morgue storage and its effect on estimating the post-mortem interval,” J. Forensic Sci. 52(2), 453–458 (2007).
[Crossref] [PubMed]

Laser Phys. (1)

V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188–1207 (2000).

NMR Biomed. (1)

E. Scheurer, M. Ith, D. Dietrich, R. Kreis, J. Hüsler, R. Dirnhofer, and C. Boesch, “Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain,” NMR Biomed. 18(3), 163–172 (2005).
[Crossref]

Photochem. Photobiol. (1)

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68(5), 603–632 (1998).
[PubMed]

Spectroscopy Europe (1)

A. M. C. Davies and T. Fearn, “Back to basics: the principles of principal component analysis,” Spectroscopy Europe 16(6), 20–23 (2005).

Other (1)

L. F. Costa, Shape analysis and classification: theory and practice. (Crc Press, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Spectral variation observed at distinct interrogation sites and animals at the same PMI for excitation at 532 nm (A) and 408 nm (C). Spectral variation observed at different PMI for excitation at 532 nm (B) and 408 nm (D).
Fig. 2
Fig. 2 (A)Evolution of the ratio intensity (I600/I630) as the PMI increases. (B) Dependence of the average spectral ratio I630/I600 with PMI.
Fig. 3
Fig. 3 (A) PC1 x PC2 plot showing sample distribution of all 5 investigated groups. (B)Angular coefficient determined for each PMI in PC1 x PC2.
Fig. 4
Fig. 4 Correlation plots of real and estimated PMI determined by intensity ratio I630/I600 (A) and by PCA (B).

Tables (1)

Tables Icon

Table 1 Present chronotanatognosis techniques: animal studies where the PMI was predicted and the standard deviation calculated. Results were obtained from our interpretation of the published data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R1.40.3(1+ePMI41.510.6)
A=PMI+58328

Metrics