Abstract

We propose a modified rectangular lattice PCF and numerically investigate its birefringence and dispersion. Based on the plane wave expansion method, it is shown that the proposed structure provides high birefringence and negative dispersion. Numerical results show that the birefringence of the modified PCF reaches 10-2 and the leakage loss is about 1000 times smaller than that of an original rectangular PCF because the modification gives rise to the strong confinement of guided modes. Dispersion and its slope are also negative over the C band.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of a pentagonal photonic crystal fiber with high birefringence and large flattened negative dispersion

Xuyou Li, Pan Liu, Zhenlong Xu, and Zhiyong Zhang
Appl. Opt. 54(24) 7350-7357 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [Crossref] [PubMed]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stenz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
    [Crossref]
  3. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
    [Crossref]
  4. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: An efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
    [Crossref]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
    [Crossref]
  6. J. Ju, W. Jin, and M. S. Demokan, “Properties of a Highly Birefringent Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15, 1375–1377 (2003).
    [Crossref]
  7. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
    [Crossref]
  8. S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, “Ultrahigh birefringence of elliptic core fiber with irregular air holes,” J. Appl. Phys. 101, 016101 (2007).
    [Crossref]
  9. M. J. Steel and P. M. Osgood, “Elliptic-hole photonic crystal fibers,” Opt. Lett. 26, 229–231 (2001).
    [Crossref]
  10. M. J. Steel and R. M. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19, 495–503 (2001).
    [Crossref]
  11. L. Zhang and C. Yang, “photonic crystal fibers with squeezed hexagonal lattice,” Opt. Express 12, 2371–2376 (2004).
    [Crossref] [PubMed]
  12. P. Song, L. Zhang, Z. Wang, Q. Hu, S. Zhao, S. Jiang, and S. Liu, “Birefringnece characteristics of squeezed lattice photonic crystal fiber,” J. Lightwave Technol. 25, 1771–1776 (2007).
    [Crossref]
  13. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
    [Crossref]
  14. M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibers,” J. Opt. A 6, 997–1000 (2004).
    [Crossref]
  15. M. Y. Chen and R. J. Yu, “Polarization properties of elliptical-hole rectangular lattice photonic crystal fibers,” J. Opt. A 6, 512–515 (2004).
    [Crossref]
  16. L. Wang and D. Yang, “Highly birefringent elliptical-hole rectangular lattice photonic crystal fibers with modified air holes near the core,” Opt. Express 15, 8892–8897 (2007).
    [Crossref] [PubMed]
  17. Y. C. Liu and Y. Lai, “Optical birefringence and polarization dependent loss of square-and rectangular-lattice holey fibers with elliptical air holes : numerical analysis,” Opt. Express 13, 225–235 (2004).
    [Crossref]
  18. A. Ferrando and J. J. Miret, “Single-polarization single-mode intraband guidance in supersquare photonic crystal fibers,” Appl. Phys. Lett. 78, 3184–3186 (2001).
    [Crossref]
  19. A. H. Bouk, A. Cucinotta, F. Poli, and S. Selleri, “Dispersion properties of square-lattice photonic crystal fibers,” Opt. Express 12, 941–946 (2004).
    [Crossref] [PubMed]
  20. S. G. Johnson and J. D. Joannopoulos, “Block-interative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-128-3-173.
    [Crossref] [PubMed]
  21. S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express 11, 167–175 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-167.
    [Crossref] [PubMed]
  22. C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
    [Crossref]
  23. X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HIBI-PCF sagnac loop filter,” Optics Commun. 250, 63–68 (2005).
    [Crossref]
  24. A. Woodfin, I. Tomkos, and A. Filios, “Negative-dispersion fiber in metropolitan networks,” Lightwave, January 2002.
  25. R. T. Bise and D. J. Trevor, “Sol-gel derived microstructured fiber: Fabrication and characterization,” in Optical Fiber Communications Conf. (OFC). Washington, DC, Mar. 2005, 3, Optical Society of America.
  26. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G, Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336–1338 (2004).
    [Crossref] [PubMed]

2007 (3)

2005 (1)

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HIBI-PCF sagnac loop filter,” Optics Commun. 250, 63–68 (2005).
[Crossref]

2004 (7)

2003 (2)

J. Ju, W. Jin, and M. S. Demokan, “Properties of a Highly Birefringent Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15, 1375–1377 (2003).
[Crossref]

S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express 11, 167–175 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-167.
[Crossref] [PubMed]

2001 (5)

S. G. Johnson and J. D. Joannopoulos, “Block-interative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-128-3-173.
[Crossref] [PubMed]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

M. J. Steel and P. M. Osgood, “Elliptic-hole photonic crystal fibers,” Opt. Lett. 26, 229–231 (2001).
[Crossref]

M. J. Steel and R. M. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19, 495–503 (2001).
[Crossref]

A. Ferrando and J. J. Miret, “Single-polarization single-mode intraband guidance in supersquare photonic crystal fibers,” Appl. Phys. Lett. 78, 3184–3186 (2001).
[Crossref]

2000 (2)

1999 (1)

1998 (1)

1997 (1)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[Crossref]

Albin, S.

Arriaga, J.

Bennett, P. J.

Birks, T. A.

Bise, R. T.

R. T. Bise and D. J. Trevor, “Sol-gel derived microstructured fiber: Fabrication and characterization,” in Optical Fiber Communications Conf. (OFC). Washington, DC, Mar. 2005, 3, Optical Society of America.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Bouk, A. H.

Broderick, N. G. R.

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Chen, M. Y.

M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibers,” J. Opt. A 6, 997–1000 (2004).
[Crossref]

M. Y. Chen and R. J. Yu, “Polarization properties of elliptical-hole rectangular lattice photonic crystal fibers,” J. Opt. A 6, 512–515 (2004).
[Crossref]

Choi, H.-G.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, “Ultrahigh birefringence of elliptic core fiber with irregular air holes,” J. Appl. Phys. 101, 016101 (2007).
[Crossref]

Cox, F.

Cucinotta, A.

Demokan, M. S.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Properties of a Highly Birefringent Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15, 1375–1377 (2003).
[Crossref]

Eijkelenborg, M. A. van

Fellew, M.

Ferrando, A.

A. Ferrando and J. J. Miret, “Single-polarization single-mode intraband guidance in supersquare photonic crystal fibers,” Appl. Phys. Lett. 78, 3184–3186 (2001).
[Crossref]

Filios, A.

A. Woodfin, I. Tomkos, and A. Filios, “Negative-dispersion fiber in metropolitan networks,” Lightwave, January 2002.

Guo, S.

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Henry, G,

Hu, Q.

Issa, N. A.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Jiang, S.

Jin, W.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Properties of a Highly Birefringent Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15, 1375–1377 (2003).
[Crossref]

Joannopoulos, J. D.

Johnson, S. G.

Ju, J.

J. Ju, W. Jin, and M. S. Demokan, “Properties of a Highly Birefringent Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15, 1375–1377 (2003).
[Crossref]

Jung, Y.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, “Ultrahigh birefringence of elliptic core fiber with irregular air holes,” J. Appl. Phys. 101, 016101 (2007).
[Crossref]

Kee, C.-S.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, “Ultrahigh birefringence of elliptic core fiber with irregular air holes,” J. Appl. Phys. 101, 016101 (2007).
[Crossref]

Kim, S.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, “Ultrahigh birefringence of elliptic core fiber with irregular air holes,” J. Appl. Phys. 101, 016101 (2007).
[Crossref]

Knight, J. C.

Knuders, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Lai, Y.

Large, M. C. J.

Lee, J.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, “Ultrahigh birefringence of elliptic core fiber with irregular air holes,” J. Appl. Phys. 101, 016101 (2007).
[Crossref]

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Liu, S.

Liu, Y. C.

Lu, C.

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HIBI-PCF sagnac loop filter,” Optics Commun. 250, 63–68 (2005).
[Crossref]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[Crossref]

Mangan, B. J.

Miret, J. J.

A. Ferrando and J. J. Miret, “Single-polarization single-mode intraband guidance in supersquare photonic crystal fibers,” Appl. Phys. Lett. 78, 3184–3186 (2001).
[Crossref]

Mogilevtsev, D.

Monro, T. M.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[Crossref]

Oh, K.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, “Ultrahigh birefringence of elliptic core fiber with irregular air holes,” J. Appl. Phys. 101, 016101 (2007).
[Crossref]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[Crossref]

Ortigosa-Blanch, A.

Osgood, P. M.

Osgood, R. M.

Peng, Q.

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HIBI-PCF sagnac loop filter,” Optics Commun. 250, 63–68 (2005).
[Crossref]

Poli, F.

Ranka, J. K.

Richardson, D. J.

Russell, P. S. J.

Russell, P. St. J.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[Crossref]

Selleri, S.

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Song, P.

Steel, M. J.

Stenz, A. J.

Tomkos, I.

A. Woodfin, I. Tomkos, and A. Filios, “Negative-dispersion fiber in metropolitan networks,” Lightwave, January 2002.

Trevor, D. J.

R. T. Bise and D. J. Trevor, “Sol-gel derived microstructured fiber: Fabrication and characterization,” in Optical Fiber Communications Conf. (OFC). Washington, DC, Mar. 2005, 3, Optical Society of America.

Wadsworth, W. J.

Wang, L.

Wang, Z.

Windeler, R. S.

Woodfin, A.

A. Woodfin, I. Tomkos, and A. Filios, “Negative-dispersion fiber in metropolitan networks,” Lightwave, January 2002.

Yang, C.

Yang, D.

Yang, X.

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HIBI-PCF sagnac loop filter,” Optics Commun. 250, 63–68 (2005).
[Crossref]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[Crossref]

Yu, R. J.

M. Y. Chen and R. J. Yu, “Polarization properties of elliptical-hole rectangular lattice photonic crystal fibers,” J. Opt. A 6, 512–515 (2004).
[Crossref]

M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibers,” J. Opt. A 6, 997–1000 (2004).
[Crossref]

Zhang, L.

Zhao, A. P.

M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibers,” J. Opt. A 6, 997–1000 (2004).
[Crossref]

Zhao, C.-L.

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HIBI-PCF sagnac loop filter,” Optics Commun. 250, 63–68 (2005).
[Crossref]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[Crossref]

Zhao, S.

Zhou, X.

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HIBI-PCF sagnac loop filter,” Optics Commun. 250, 63–68 (2005).
[Crossref]

Appl. Phys. Lett. (1)

A. Ferrando and J. J. Miret, “Single-polarization single-mode intraband guidance in supersquare photonic crystal fibers,” Appl. Phys. Lett. 78, 3184–3186 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. Ju, W. Jin, and M. S. Demokan, “Properties of a Highly Birefringent Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15, 1375–1377 (2003).
[Crossref]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[Crossref]

J. Appl. Phys. (1)

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, “Ultrahigh birefringence of elliptic core fiber with irregular air holes,” J. Appl. Phys. 101, 016101 (2007).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. A (2)

M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibers,” J. Opt. A 6, 997–1000 (2004).
[Crossref]

M. Y. Chen and R. J. Yu, “Polarization properties of elliptical-hole rectangular lattice photonic crystal fibers,” J. Opt. A 6, 512–515 (2004).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Optics Commun. (1)

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, “FBG sensor interrogation with high temperature insensitivity by using a HIBI-PCF sagnac loop filter,” Optics Commun. 250, 63–68 (2005).
[Crossref]

Other (2)

A. Woodfin, I. Tomkos, and A. Filios, “Negative-dispersion fiber in metropolitan networks,” Lightwave, January 2002.

R. T. Bise and D. J. Trevor, “Sol-gel derived microstructured fiber: Fabrication and characterization,” in Optical Fiber Communications Conf. (OFC). Washington, DC, Mar. 2005, 3, Optical Society of America.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic diagram of (a) conventional rectangular lattice PCF and (b) the modified rectangular lattice PCF
Fig. 2.
Fig. 2. The transverse electric field profiles of (a) the conventional and (b) the modified rectangular lattice PCF, where Λ = 2 μm and d / Λ = 0.4.
Fig. 3.
Fig. 3. (a) Modal birefringence, (b) leakage loss and (c) chromatic dispersion of the conventional and modified rectangular lattice PCF where Λ = 2 μm, and d / Λ = 0.4.
Fig. 4.
Fig. 4. Birefringence of the modified rectangular lattice PCF by (a) varying Λ from 1.6 μm to 2.4 μm when d / Λ = 0.4 and (b) varying d / Λ from 0.2 to 0.4 when Λ = 2.0 μm .
Fig. 5.
Fig. 5. Chromatic dispersion of a modified rectangular lattice PCFs with (a) Λ = 1.6 μm, (b) Λ = 2.0 μm, and (c) Λ = 2.4 μm for different d / Λ values in the range of 0.2 ~ 0.4.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

B=λ2π [βy(λ)βx(λ)] ,
D=Ic2Re(neff)λ2 ,
leakageloss=2·107In(10)·2πλ·Im[neffi]i=(x,y),

Metrics