Abstract

We present a single longitudinal mode, diode pumped Nd:YVO4 microchip laser where a pair of quarter-wave plates (QWPs) sandwich Nd:YVO4 and the principle axes of QWPs are oriented at 45°to the c-axis of Nd:YVO4. Three pieces of crystals were optically bonded together as a microchip without adhesive. Owing to large birefringence of Nd:YVO4, two standing waves with orthogonal polarizations compensate their hole-burning effects with each other, which diminish total spatial hole-burning effects in Nd:YVO4. The maximum pump power of greater than 25 times the threshold for single longitudinal mode operation has been theoretically shown and experimentally demonstrated. The power of output, slope efficiencies and temperature range of single longitudinal mode operation are greater than 730 mw (at 1.25 W pump), 60% and 30°C, respectively.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched Single-longitudinal-mode c-cut Nd:GdVO4 laser with a twisted-mode cavity

Haifeng Pan, Shixiang Xu, and Heping Zeng
Opt. Express 13(7) 2755-2760 (2005)

High-power stable continuous-wave single-longitudinal-mode Nd:YVO4 laser at 1342 nm

Yayun Ma, Yuanji Li, Jinxia Feng, and Kuanshou Zhang
Opt. Express 26(2) 1538-1546 (2018)

A linearly-polarized Nd:YVO4/KTP microchip green laser

C. Jung, B.-A. Yu, I.-S. Kim, Y. L. Lee, N. E. Yu, and D.-K. Ko
Opt. Express 17(22) 19611-19616 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski and A. Mooradian, “A Single-frequency microchip Nd laser,” Opt. Lett. 14, 24–26 (1989).
    [Crossref] [PubMed]
  2. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “A Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip laser,” Opt. Lett. 16, 1955–1957 (1991).
    [Crossref] [PubMed]
  3. G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron 26, 1457–1459 (1990).
    [Crossref]
  4. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
    [Crossref] [PubMed]
  5. V. Evtuhov and A. E. Siegman, “A “twisted-mode” technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt. 4, 142–143 (1965).
    [Crossref]
  6. D. A. Draegert, “Efficient Single-Longitudinal-Mode Nd:YAG laser,” IEEE J. Quantum Electron 8, 235–239 (1972).
    [Crossref]
  7. E. Wu, H. Pan, S. Zhang, and H. Zeng, “High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4 crystal,” Appl. Phys. B. 80, 459–462 (2005).
    [Crossref]
  8. A.E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986) p. 42.
  9. E. Wu, H. Haifeng, and Zeng, “Single-mode ring laser of twin off-axially cut neodymium-doped yttrium orthovanadate crystals in a linear cavity,” J. Opt. Soc. Am. B 21, 1463–1468 (2004).
    [Crossref]
  10. S. Helmfrid and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers: theoretical study,” J. Opt. Soc. Am. B. 11, 436–445 (1994).
    [Crossref]
  11. J. J. Zayhowski, “The Effects of Spatial Hole Burning and Energy Diffusion on the Single-Mode Operation of Standing-Wave Laser,” IEEE J. Quantum Electron 26, 2052–2057 (1990).
    [Crossref]
  12. L. W. Casperson, “Laser power calculations: sources of error.” Appl. Opt. 19422–434 (1980).
    [Crossref] [PubMed]
  13. H. Nagamoto, M. Nakatsuka, K. Naito, M. Yamanaka, K. Yosida, T. Sasaki, T. Kanabe, S. Saito, and Y. Kuvano, “Laser diode pumped Nd:YVO4 laser,” Laser Res. 18, 639–645 (1990).
    [Crossref]
  14. T. Sasaki, T. Kojima, A. Yokotani, O. Oguri, and S. Nakai, “Single-longitudinal mode operation and second-harmonic generation of Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1665–1667 (1991).
    [Crossref] [PubMed]
  15. A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization Effect, Birefringent Filtering, and Single-Frequency Operation in Lasers Containing a Birefringent Gain Crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
    [Crossref]
  16. C. Kopp and K. Gilbert, “Low temperature epoxy-free and flux-less bonding process applied to solid-state microchip laser,” Proc. SPIE 5825, 602–608 (2005).
    [Crossref]
  17. D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity Doubling of CW Diode-Pumped Nd:YAG Lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
    [Crossref]
  18. T. Baer, “Large-amplitude fluctuations due to longitudinal mode-coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. 3, 1175–1180 (1986).
    [Crossref]

2005 (2)

E. Wu, H. Pan, S. Zhang, and H. Zeng, “High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4 crystal,” Appl. Phys. B. 80, 459–462 (2005).
[Crossref]

C. Kopp and K. Gilbert, “Low temperature epoxy-free and flux-less bonding process applied to solid-state microchip laser,” Proc. SPIE 5825, 602–608 (2005).
[Crossref]

2004 (1)

2000 (1)

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization Effect, Birefringent Filtering, and Single-Frequency Operation in Lasers Containing a Birefringent Gain Crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[Crossref]

1994 (1)

S. Helmfrid and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers: theoretical study,” J. Opt. Soc. Am. B. 11, 436–445 (1994).
[Crossref]

1992 (1)

D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity Doubling of CW Diode-Pumped Nd:YAG Lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[Crossref]

1991 (2)

1990 (3)

G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron 26, 1457–1459 (1990).
[Crossref]

J. J. Zayhowski, “The Effects of Spatial Hole Burning and Energy Diffusion on the Single-Mode Operation of Standing-Wave Laser,” IEEE J. Quantum Electron 26, 2052–2057 (1990).
[Crossref]

H. Nagamoto, M. Nakatsuka, K. Naito, M. Yamanaka, K. Yosida, T. Sasaki, T. Kanabe, S. Saito, and Y. Kuvano, “Laser diode pumped Nd:YVO4 laser,” Laser Res. 18, 639–645 (1990).
[Crossref]

1989 (1)

1986 (1)

T. Baer, “Large-amplitude fluctuations due to longitudinal mode-coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. 3, 1175–1180 (1986).
[Crossref]

1985 (1)

1980 (1)

1972 (1)

D. A. Draegert, “Efficient Single-Longitudinal-Mode Nd:YAG laser,” IEEE J. Quantum Electron 8, 235–239 (1972).
[Crossref]

1965 (1)

Anthon, D. W.

D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity Doubling of CW Diode-Pumped Nd:YAG Lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[Crossref]

Baer, T.

G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron 26, 1457–1459 (1990).
[Crossref]

T. Baer, “Large-amplitude fluctuations due to longitudinal mode-coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. 3, 1175–1180 (1986).
[Crossref]

Byer, R. L.

Casperson, L. W.

Conroy, R. S.

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization Effect, Birefringent Filtering, and Single-Frequency Operation in Lasers Containing a Birefringent Gain Crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[Crossref]

Draegert, D. A.

D. A. Draegert, “Efficient Single-Longitudinal-Mode Nd:YAG laser,” IEEE J. Quantum Electron 8, 235–239 (1972).
[Crossref]

Evtuhov, V.

Friel, G. J.

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization Effect, Birefringent Filtering, and Single-Frequency Operation in Lasers Containing a Birefringent Gain Crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[Crossref]

Gilbert, K.

C. Kopp and K. Gilbert, “Low temperature epoxy-free and flux-less bonding process applied to solid-state microchip laser,” Proc. SPIE 5825, 602–608 (2005).
[Crossref]

Haifeng, H.

Helmfrid, S.

S. Helmfrid and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers: theoretical study,” J. Opt. Soc. Am. B. 11, 436–445 (1994).
[Crossref]

Kanabe, T.

H. Nagamoto, M. Nakatsuka, K. Naito, M. Yamanaka, K. Yosida, T. Sasaki, T. Kanabe, S. Saito, and Y. Kuvano, “Laser diode pumped Nd:YVO4 laser,” Laser Res. 18, 639–645 (1990).
[Crossref]

Kane, T. J.

Kemp, A. J.

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization Effect, Birefringent Filtering, and Single-Frequency Operation in Lasers Containing a Birefringent Gain Crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[Crossref]

Kintz, G. J.

G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron 26, 1457–1459 (1990).
[Crossref]

Kobayashi, T.

Kojima, T.

Kopp, C.

C. Kopp and K. Gilbert, “Low temperature epoxy-free and flux-less bonding process applied to solid-state microchip laser,” Proc. SPIE 5825, 602–608 (2005).
[Crossref]

Kuvano, Y.

H. Nagamoto, M. Nakatsuka, K. Naito, M. Yamanaka, K. Yosida, T. Sasaki, T. Kanabe, S. Saito, and Y. Kuvano, “Laser diode pumped Nd:YVO4 laser,” Laser Res. 18, 639–645 (1990).
[Crossref]

Lake, T. K.

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization Effect, Birefringent Filtering, and Single-Frequency Operation in Lasers Containing a Birefringent Gain Crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[Crossref]

Mooradian, A.

Mukai, A.

Nagamoto, H.

H. Nagamoto, M. Nakatsuka, K. Naito, M. Yamanaka, K. Yosida, T. Sasaki, T. Kanabe, S. Saito, and Y. Kuvano, “Laser diode pumped Nd:YVO4 laser,” Laser Res. 18, 639–645 (1990).
[Crossref]

Naito, K.

H. Nagamoto, M. Nakatsuka, K. Naito, M. Yamanaka, K. Yosida, T. Sasaki, T. Kanabe, S. Saito, and Y. Kuvano, “Laser diode pumped Nd:YVO4 laser,” Laser Res. 18, 639–645 (1990).
[Crossref]

Nakai, S.

Nakatsuka, M.

H. Nagamoto, M. Nakatsuka, K. Naito, M. Yamanaka, K. Yosida, T. Sasaki, T. Kanabe, S. Saito, and Y. Kuvano, “Laser diode pumped Nd:YVO4 laser,” Laser Res. 18, 639–645 (1990).
[Crossref]

Nozawa, Y.

Oguri, O.

Pan, H.

E. Wu, H. Pan, S. Zhang, and H. Zeng, “High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4 crystal,” Appl. Phys. B. 80, 459–462 (2005).
[Crossref]

Pier, T. J.

D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity Doubling of CW Diode-Pumped Nd:YAG Lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[Crossref]

Ressl, M. R.

D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity Doubling of CW Diode-Pumped Nd:YAG Lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[Crossref]

Saito, S.

H. Nagamoto, M. Nakatsuka, K. Naito, M. Yamanaka, K. Yosida, T. Sasaki, T. Kanabe, S. Saito, and Y. Kuvano, “Laser diode pumped Nd:YVO4 laser,” Laser Res. 18, 639–645 (1990).
[Crossref]

Sasaki, T.

T. Sasaki, T. Kojima, A. Yokotani, O. Oguri, and S. Nakai, “Single-longitudinal mode operation and second-harmonic generation of Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1665–1667 (1991).
[Crossref] [PubMed]

H. Nagamoto, M. Nakatsuka, K. Naito, M. Yamanaka, K. Yosida, T. Sasaki, T. Kanabe, S. Saito, and Y. Kuvano, “Laser diode pumped Nd:YVO4 laser,” Laser Res. 18, 639–645 (1990).
[Crossref]

Siegman, A. E.

Siegman, A.E.

A.E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986) p. 42.

Sinclair, B. D.

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization Effect, Birefringent Filtering, and Single-Frequency Operation in Lasers Containing a Birefringent Gain Crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[Crossref]

Sipes, D. L.

D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity Doubling of CW Diode-Pumped Nd:YAG Lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[Crossref]

Taira, T.

Tatsuno, K.

S. Helmfrid and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers: theoretical study,” J. Opt. Soc. Am. B. 11, 436–445 (1994).
[Crossref]

Wu, E.

E. Wu, H. Pan, S. Zhang, and H. Zeng, “High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4 crystal,” Appl. Phys. B. 80, 459–462 (2005).
[Crossref]

E. Wu, H. Haifeng, and Zeng, “Single-mode ring laser of twin off-axially cut neodymium-doped yttrium orthovanadate crystals in a linear cavity,” J. Opt. Soc. Am. B 21, 1463–1468 (2004).
[Crossref]

Yamanaka, M.

H. Nagamoto, M. Nakatsuka, K. Naito, M. Yamanaka, K. Yosida, T. Sasaki, T. Kanabe, S. Saito, and Y. Kuvano, “Laser diode pumped Nd:YVO4 laser,” Laser Res. 18, 639–645 (1990).
[Crossref]

Yokotani, A.

Yosida, K.

H. Nagamoto, M. Nakatsuka, K. Naito, M. Yamanaka, K. Yosida, T. Sasaki, T. Kanabe, S. Saito, and Y. Kuvano, “Laser diode pumped Nd:YVO4 laser,” Laser Res. 18, 639–645 (1990).
[Crossref]

Zayhowski, J. J.

J. J. Zayhowski, “The Effects of Spatial Hole Burning and Energy Diffusion on the Single-Mode Operation of Standing-Wave Laser,” IEEE J. Quantum Electron 26, 2052–2057 (1990).
[Crossref]

J. J. Zayhowski and A. Mooradian, “A Single-frequency microchip Nd laser,” Opt. Lett. 14, 24–26 (1989).
[Crossref] [PubMed]

Zeng,

Zeng, H.

E. Wu, H. Pan, S. Zhang, and H. Zeng, “High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4 crystal,” Appl. Phys. B. 80, 459–462 (2005).
[Crossref]

Zhang, S.

E. Wu, H. Pan, S. Zhang, and H. Zeng, “High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4 crystal,” Appl. Phys. B. 80, 459–462 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B. (1)

E. Wu, H. Pan, S. Zhang, and H. Zeng, “High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4 crystal,” Appl. Phys. B. 80, 459–462 (2005).
[Crossref]

IEEE J. Quantum Electron (3)

D. A. Draegert, “Efficient Single-Longitudinal-Mode Nd:YAG laser,” IEEE J. Quantum Electron 8, 235–239 (1972).
[Crossref]

G. J. Kintz and T. Baer, “Single-frequency operation in solid-state laser materials with short absorption depths,” IEEE J. Quantum Electron 26, 1457–1459 (1990).
[Crossref]

J. J. Zayhowski, “The Effects of Spatial Hole Burning and Energy Diffusion on the Single-Mode Operation of Standing-Wave Laser,” IEEE J. Quantum Electron 26, 2052–2057 (1990).
[Crossref]

IEEE J. Quantum Electron. (2)

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization Effect, Birefringent Filtering, and Single-Frequency Operation in Lasers Containing a Birefringent Gain Crystal,” IEEE J. Quantum Electron. 36, 228–235 (2000).
[Crossref]

D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressl, “Intracavity Doubling of CW Diode-Pumped Nd:YAG Lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[Crossref]

J. Opt. Soc. Am. (1)

T. Baer, “Large-amplitude fluctuations due to longitudinal mode-coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. 3, 1175–1180 (1986).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

S. Helmfrid and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers: theoretical study,” J. Opt. Soc. Am. B. 11, 436–445 (1994).
[Crossref]

Laser Res. (1)

H. Nagamoto, M. Nakatsuka, K. Naito, M. Yamanaka, K. Yosida, T. Sasaki, T. Kanabe, S. Saito, and Y. Kuvano, “Laser diode pumped Nd:YVO4 laser,” Laser Res. 18, 639–645 (1990).
[Crossref]

Opt. Lett. (4)

Proc. SPIE (1)

C. Kopp and K. Gilbert, “Low temperature epoxy-free and flux-less bonding process applied to solid-state microchip laser,” Proc. SPIE 5825, 602–608 (2005).
[Crossref]

Other (1)

A.E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986) p. 42.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The cavity of the OTM microchip laser
Fig. 2.
Fig. 2. The normalized population inversion density N(z) (reference laser- dot line) and NOTM(z) (OTM laser-solid line) resulting from spatial hole burning for pump power=3 times the threshold power, r=3 (a) and =20 times the threshold, r=20 (b). For OTM laser the distribution of population inversion density is a modulated sine square wave with the period of modulation 5.1 µm.
Fig. 3.
Fig. 3. (a) The ratio of the maximum pump power of single-longitudinal-mode operation to the threshold as a function of β. for OTM laser (R—solid line), and reference laser (r—dot line). (b) R as a function of r.
Fig. 4.
Fig. 4. The picture of the microchip which consisted of QWP– Nd:YVO4 –QWP optically bonded together without adhesive. Dimension- 1×1×1×1.81 mm3.
Fig. 5.
Fig. 5. 3D scenograph of the microchip laser package. Dimension-.12×12×20 mm3
Fig. 6.
Fig. 6. The output power and wavelength of single-longitudinal-mode operation for OTM laser as a function of pump power (a) and temperature (b).
Fig. 7.
Fig. 7. Oscilloscope trace of the laser output at 532 nm. of OTM laser (a) and MLM laser (b). RMS noise of OTM laser and MLM laser 0.03% and 7.87%, respectively.
Fig. 8.
Fig. 8. Long-term stability of the laser output at 532 nm. of OTM laser.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

R ( θ ) = [ cos θ sin θ sin θ cos θ ]
C ( δ ) = exp ( i p ) [ exp ( i δ 2 ) 0 0 exp ( i δ 2 ) ]
C ( ς ) = exp ( i q ) [ exp ( i ς 2 ) 0 0 exp ( i ς 2 ) ]
M ( θ ) = R ( θ ) C 2 ( ς ) R ( θ ) C ( δ ) R ( θ ) C 2 ( ς ) R ( θ ) C ( δ )
M ( 45 ) = exp ( ikL ) [ 1 0 0 1 ]
FSR = c L
I m ( z ) = 4 I m sin 2 ( k m z )
σ 1 a b N ( z ) I 1 ( z ) d z = γ 1 I 1
N ( z ) = N 0 ( z ) 1 + I 1 ( z ) I sat , 1
I sat , 1 = ω ¯ σ 1 τ
I I sat = ( ( 4 r 1 ) ( 1 + 8 r ) 1 2 ) 8
σ 2 a b N ( z ) I 2 ( z ) d z < γ 2 I 2
a b N ( z ) [ I 2 ( z ) I 2 β I 1 ( z ) I 1 ] d z < 0
β = σ 1 γ 2 σ 2 γ 1
I e ( z ) = 4 I sin 2 ( k e z + φ e ) ,
I 0 ( z ) = 4 I sin 2 ( k 0 z + φ o )
N OTM ( z ) = N 0 ( z ) 1 + I e ( z ) I sat , e + I o ( z ) I sat , o
= N 0 ( z ) 1 + I ( z ) I sat , e
I sat , e = ω ¯ σ e τ and I sat , o = ω ¯ σ o τ
I ( z ) = 4 I [ sin 2 ( k e z + φ e ) + ( σ o σ e ) sin 2 ( k o z + φ o ) ]
ρ = λ ( n e n o ) = 5.1 μ m .
N 0 ( z ) = e α ( z a )

Metrics