Abstract

We produced a high power radially-polarized output directly from a diode-pumped Nd:YVO4 bounce amplifier, using an autocloned photonic crystal mirror as an output coupler, with a simple cavity configuration. The radially-polarized output power of ~6 W was achieved, and a corresponding slope efficiency was estimated to be ~17 %. The output was characterized to be an ideal radially-polarized beam from its polarization distribution profiles. The output mode was not an eigenmode in the resonator. We discussed and clarified intra-cavity mode dynamics in terms of polarization distribution in the wavefront.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-μm bounce laser

Masahito Okida, Takashige Omatsu, Masahide Itoh, and Toyohiko Yatagai
Opt. Express 15(12) 7616-7622 (2007)

Sub-100 W picosecond output from a phase-conjugate Nd:YVO4 bounce amplifier

K. Nawata, M. Okida, K. Furuki, K. Miyamoto, and T. Omatsu
Opt. Express 17(23) 20816-20823 (2009)

MW ps pulse generation at sub-MHz repetition rates from a phase conjugate Nd:YVO4 bounce amplifier

Kouji Nawata, Masahito Okida, Kenji Furuki, and Takashige Omatsu
Opt. Express 15(15) 9123-9128 (2007)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
    [Crossref] [PubMed]
  2. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
    [Crossref] [PubMed]
  3. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [Crossref]
  4. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref] [PubMed]
  5. T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272, 314–319 (2007).
    [Crossref]
  6. A. Shoham, R. Vander, and S. G. Lipson, “Production of radially and azimuthally polarized polychromatic beams,” Opt. Lett. 31, 3405–3407 (2006).
    [Crossref] [PubMed]
  7. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
    [Crossref]
  8. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33, 1817–1822 (2000).
    [Crossref]
  9. Q. Zhan, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324–331 (2002).
    [PubMed]
  10. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [Crossref] [PubMed]
  11. S. C. Tidwell, G. H. Kim, and W. D. Kimua, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993).
    [Crossref] [PubMed]
  12. Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88, 095005 (2002).
    [Crossref] [PubMed]
  13. P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phy. Rev. E 54, 4211–4232 (1996).
    [Crossref]
  14. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31, 1726–1728 (2006).
    [Crossref] [PubMed]
  15. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
    [Crossref] [PubMed]
  16. K. G. Toussaint, Jr., S. Park, J. E. Jureller, and N. F. Schere, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30, 2846–2848 (2005).
    [Crossref]
  17. N. Passily, R. S. Denis, K Ait-Ameur, F. Treussart, R. Hierle, and J. F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22, 984–991 (2005).
    [Crossref]
  18. T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-Selective grting mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).
  19. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468 (2007).
    [Crossref] [PubMed]
  20. P. B. Phua and W. J. Lai “Simple coherent polarization manipulation scheme for generating high power radially polarized beam,” Opt. Express 15, 14251–14256 (2007).
    [Crossref] [PubMed]
  21. T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, “Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tenability,” Opt. Express 12, 12839–12845 (2006).
    [Crossref]
  22. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324, (2000).
    [Crossref]
  23. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807–809 (2003).
    [Crossref] [PubMed]
  24. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
    [Crossref] [PubMed]
  25. R. Menzel, Photonics, Linear and Nonlinear Interactions of Laser Light and matter, 2nd ed. (Springer, Berlin - New York, 2007) pp.499–500.
  26. J. F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, “Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon,” Opt. Express 14, 3304–3311 (2006).
    [Crossref] [PubMed]
  27. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006).
    [Crossref] [PubMed]
  28. M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-µm bounce laser,” Opt. Express. 15, 7616–7622 (2007).
    [Crossref] [PubMed]
  29. S. Kawakami and Y. Inoue, “Novel functions in microscopy realized by patterned photonic crystals,” IEICE Trans. Electron. E90-C, 1046–1054 (2007).
    [Crossref]
  30. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007).
    [Crossref]
  31. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
    [Crossref]

2007 (6)

T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272, 314–319 (2007).
[Crossref]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468 (2007).
[Crossref] [PubMed]

P. B. Phua and W. J. Lai “Simple coherent polarization manipulation scheme for generating high power radially polarized beam,” Opt. Express 15, 14251–14256 (2007).
[Crossref] [PubMed]

M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-µm bounce laser,” Opt. Express. 15, 7616–7622 (2007).
[Crossref] [PubMed]

S. Kawakami and Y. Inoue, “Novel functions in microscopy realized by patterned photonic crystals,” IEICE Trans. Electron. E90-C, 1046–1054 (2007).
[Crossref]

Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007).
[Crossref]

2006 (5)

2005 (4)

2004 (1)

2003 (2)

2002 (3)

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

2000 (4)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
[Crossref] [PubMed]

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33, 1817–1822 (2000).
[Crossref]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324, (2000).
[Crossref]

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[Crossref]

1996 (1)

P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phy. Rev. E 54, 4211–4232 (1996).
[Crossref]

1993 (1)

1990 (1)

Ahmed, M. A.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-Selective grting mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).

Ait-Ameur, K

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

Biener, G.

Bisson, J. F.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324, (2000).
[Crossref]

Bomzon, Z.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[Crossref]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324, (2000).
[Crossref]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
[Crossref] [PubMed]

Courjon, D.

T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272, 314–319 (2007).
[Crossref]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324, (2000).
[Crossref]

Denis, R. S.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Esarey, E.

P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phy. Rev. E 54, 4211–4232 (1996).
[Crossref]

Ford, D. H.

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324, (2000).
[Crossref]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Glur, H.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-Selective grting mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).

Graf, T.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-Selective grting mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).

Grosjean, T.

T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272, 314–319 (2007).
[Crossref]

Hasman, E.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[Crossref]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324, (2000).
[Crossref]

Hierle, R.

Hirayama, T.

T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, “Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tenability,” Opt. Express 12, 12839–12845 (2006).
[Crossref]

Inoue, Y.

S. Kawakami and Y. Inoue, “Novel functions in microscopy realized by patterned photonic crystals,” IEICE Trans. Electron. E90-C, 1046–1054 (2007).
[Crossref]

Itoh, M.

M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-µm bounce laser,” Opt. Express. 15, 7616–7622 (2007).
[Crossref] [PubMed]

Jackel, S.

Jureller, J. E.

Kawakami, S.

S. Kawakami and Y. Inoue, “Novel functions in microscopy realized by patterned photonic crystals,” IEICE Trans. Electron. E90-C, 1046–1054 (2007).
[Crossref]

Keitel, C. H.

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88, 095005 (2002).
[Crossref] [PubMed]

Kim, G. H.

Kimua, W. D.

Kimura, W. D.

Kleiner, V.

Kozawa, Y.

Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007).
[Crossref]

T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, “Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tenability,” Opt. Express 12, 12839–12845 (2006).
[Crossref]

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
[Crossref] [PubMed]

Krall, J.

P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phy. Rev. E 54, 4211–4232 (1996).
[Crossref]

Lai, W. J.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Li, J.

Lipson, S. G.

Lumer, Y.

Machavariani, G.

Meir, A.

Menzel, R.

R. Menzel, Photonics, Linear and Nonlinear Interactions of Laser Light and matter, 2nd ed. (Springer, Berlin - New York, 2007) pp.499–500.

Moser, T.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-Selective grting mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).

Moshe, I.

Nakamura, T.

T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, “Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tenability,” Opt. Express 12, 12839–12845 (2006).
[Crossref]

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33, 1817–1822 (2000).
[Crossref]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[Crossref]

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33, 1817–1822 (2000).
[Crossref]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[Crossref]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

Okida, M.

M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-µm bounce laser,” Opt. Express. 15, 7616–7622 (2007).
[Crossref] [PubMed]

Omatsu, T.

M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-µm bounce laser,” Opt. Express. 15, 7616–7622 (2007).
[Crossref] [PubMed]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324, (2000).
[Crossref]

Park, S.

Parriaux, O.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-Selective grting mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).

Passily, N.

Phua, P. B.

Pigeon, F.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-Selective grting mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Roch, J. F.

Romano, V.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-Selective grting mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).

Salamin, Y. I.

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88, 095005 (2002).
[Crossref] [PubMed]

Sato, S.

Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007).
[Crossref]

T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, “Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tenability,” Opt. Express 12, 12839–12845 (2006).
[Crossref]

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
[Crossref] [PubMed]

Schere, N. F.

Senatsky, Yu.

Shoham, A.

Sprangle, P.

P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phy. Rev. E 54, 4211–4232 (1996).
[Crossref]

Tidwell, S. C.

Toussaint, Jr., K. G.

Treussart, F.

Ueda, K.

Vander, R.

Yatagai, T.

M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-µm bounce laser,” Opt. Express. 15, 7616–7622 (2007).
[Crossref] [PubMed]

Yonezawa, K.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
[Crossref] [PubMed]

Zhan, Q.

Appl. Opt. (2)

Appl. Phys. (1)

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-Selective grting mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).

Appl. Phys. Lett. (1)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324, (2000).
[Crossref]

IEICE Trans. Electron. (1)

S. Kawakami and Y. Inoue, “Novel functions in microscopy realized by patterned photonic crystals,” IEICE Trans. Electron. E90-C, 1046–1054 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D (2)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[Crossref]

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33, 1817–1822 (2000).
[Crossref]

Opt. Commun. (2)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272, 314–319 (2007).
[Crossref]

Opt. Express (6)

Opt. Express. (1)

M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-µm bounce laser,” Opt. Express. 15, 7616–7622 (2007).
[Crossref] [PubMed]

Opt. Lett. (8)

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006).
[Crossref] [PubMed]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[Crossref]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468 (2007).
[Crossref] [PubMed]

I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807–809 (2003).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
[Crossref] [PubMed]

A. Shoham, R. Vander, and S. G. Lipson, “Production of radially and azimuthally polarized polychromatic beams,” Opt. Lett. 31, 3405–3407 (2006).
[Crossref] [PubMed]

K. G. Toussaint, Jr., S. Park, J. E. Jureller, and N. F. Schere, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30, 2846–2848 (2005).
[Crossref]

Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31, 1726–1728 (2006).
[Crossref] [PubMed]

Phy. Rev. E (1)

P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phy. Rev. E 54, 4211–4232 (1996).
[Crossref]

Phys. Rev. Lett. (3)

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88, 095005 (2002).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Other (1)

R. Menzel, Photonics, Linear and Nonlinear Interactions of Laser Light and matter, 2nd ed. (Springer, Berlin - New York, 2007) pp.499–500.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup of laser cavity (top view). EM is a high-reflection flat mirror, OC is an output coupler formed by an autocloned photonic crystal mirror, QP is a quarter waveplate, L1, L2, and L3 are spherical lenses, and CL1 and CL2 are cylindrical lenses, respectively. M is a high-reflection flat mirror and SF is a spatial filter. Transversely-pumping laser diode is TM- polarized (vertically-polarized).
Fig. 2.
Fig. 2. Transmission and reflection properties of the OC (side view), for (a) a linearly incident beam and (b) a circularly polarized incident beam. I, T, and R denote an incident beam, a transmitted beam, and a reflected beam, respectively.
Fig. 3.
Fig. 3. Radially-polarized output power as a function of pump power.
Fig. 4.
Fig. 4. (a). Near-field pattern of the output without spatial filter. (b) Far-field pattern with spatial filter. (c) Spatial form of the leaked beam from the EM. The leaked beam is almost vertically-polarized (its purity to be >95 %).
Fig. 5.
Fig. 5. Spatial shapes of the radially-polarized output. Intensity profiles of (a) vertically-polarized component, (b) 45°-polarized component, and (c) horizontally-polarized component.
Fig. 6.
Fig. 6. (a). Output powers as a function of pump power using flat-OC with various reflectivity in the case B. A solid black line denotes the radially-polarized output power. (b) The estimated slope efficiency as a function of reflectivity in case B. The red line is a fitting curve.
Fig. 7.
Fig. 7. Schematic of polarization distribution dynamics in the cavity.

Metrics