Abstract

The all-optical polarization switch adopting InGaAsP Bragg-spaced quantum wells (BSQWs) is investigated theoretically because it can be compatible with the optical communication system. The theoretical analysis is based on the transfer matrix approach which provides formalism for studying the optical response of the InGaAsP BSQWs. With this theoretical model we calculate the performance characteristics of the switch, which has a high contrast ratio(~31.1dB), a small insert loss (~13dB), and a small switching energy (~30 MW/cm 2).The theory can be used as a basis of experimental research of all-optical spin-dependent polarization switching in BSQWs.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical waveguide structure for an all-optical switch based on intersubband transitions in InGaAs/AlAsSb quantum wells

Yuriy Fedoryshyn, Patric Strasser, Ping Ma, Franck Robin, and Heinz Jäckel
Opt. Lett. 32(18) 2680-2682 (2007)

Wavelength conversion of 1.53-µm-wavelength picosecond pulses in an ion-implanted multiple-quantum-well all-optical switch

E. P. Burr, M. Pantouvaki, A. J. Seeds, R. M. Gwilliam, S. M. Pinches, and C. C. Button
Opt. Lett. 28(6) 483-485 (2003)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Johnston, M. Yildirim, J. P. Prineas, Arthur L. Smirla, H. M. Gibbs, and G. Khitrova, “All-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 87, 101113 (2005).
    [Crossref]
  2. W. J. Johnston, J. P. Prineas, and Arthur L. Smirl, “Ultrafast all-optical polarization switching in Bragg-spaced quantum wells at 80 K,” J. Appl. Phys. 101, 046101 (2007).
    [Crossref]
  3. J. Prineas, J. Zhou, J. Kuhl, H. Gibbs, G. Khitrova, S. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81, 4332 (2002).
    [Crossref]
  4. S. Adachi, “Material parameters of In1-xGax AsyP1-y and related binaries,” J. Appl. Phys. 53, 8775–8792 (1982).
    [Crossref]
  5. M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Room-temperature exciton optical absorption peaks in InGaAsP/InP multiple quantum wells,” Appl. Rev. Lett. 54, 1353–1355 (1989).
    [Crossref]
  6. D. T. Nguyen, N. H. Kwong, Z. S. Yang, R. Binder, and Arthur L. Smirl, “Mechanism of all-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 90, 181116 (2007).
    [Crossref]
  7. M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Optical properties of one-dimensional photonic crystals based on multiple-quantum-well structures,” Phys. Rev. B. 71, 235335 (2005).
    [Crossref]
  8. M. Wegener, I. B. Joseph, G. Sucha, M. N. Islam, N. Sauer, T. Y. Chang, and D. S. Chemla, “Femtosecond dynamics of exciton absorption in the infrared InxGa1-xAs quantum wells,” Phys. Rev. B 39, 12794–12801 (1989).
    [Crossref]
  9. J. P. Prineas, C. Cao, M. Yildirim, W. Johnston, and M. Reddy, “Resonant photonic band gap structures realized from molecular-beam-epitaxially growm InGaAs/GaAs Bragg-spaced quantum wells,” J. Appl. Phys. 100, 063101 (2006).
    [Crossref]
  10. M. Combescot and R. Combescot, “Optical Stark effect of the exciton: Biexcitonic origin of the shift,” Phys. Rev. B 40, 3788–3801 (1989).
    [Crossref]

2007 (2)

W. J. Johnston, J. P. Prineas, and Arthur L. Smirl, “Ultrafast all-optical polarization switching in Bragg-spaced quantum wells at 80 K,” J. Appl. Phys. 101, 046101 (2007).
[Crossref]

D. T. Nguyen, N. H. Kwong, Z. S. Yang, R. Binder, and Arthur L. Smirl, “Mechanism of all-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 90, 181116 (2007).
[Crossref]

2006 (1)

J. P. Prineas, C. Cao, M. Yildirim, W. Johnston, and M. Reddy, “Resonant photonic band gap structures realized from molecular-beam-epitaxially growm InGaAs/GaAs Bragg-spaced quantum wells,” J. Appl. Phys. 100, 063101 (2006).
[Crossref]

2005 (2)

M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Optical properties of one-dimensional photonic crystals based on multiple-quantum-well structures,” Phys. Rev. B. 71, 235335 (2005).
[Crossref]

W. J. Johnston, M. Yildirim, J. P. Prineas, Arthur L. Smirla, H. M. Gibbs, and G. Khitrova, “All-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 87, 101113 (2005).
[Crossref]

2002 (1)

J. Prineas, J. Zhou, J. Kuhl, H. Gibbs, G. Khitrova, S. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81, 4332 (2002).
[Crossref]

1989 (3)

M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Room-temperature exciton optical absorption peaks in InGaAsP/InP multiple quantum wells,” Appl. Rev. Lett. 54, 1353–1355 (1989).
[Crossref]

M. Wegener, I. B. Joseph, G. Sucha, M. N. Islam, N. Sauer, T. Y. Chang, and D. S. Chemla, “Femtosecond dynamics of exciton absorption in the infrared InxGa1-xAs quantum wells,” Phys. Rev. B 39, 12794–12801 (1989).
[Crossref]

M. Combescot and R. Combescot, “Optical Stark effect of the exciton: Biexcitonic origin of the shift,” Phys. Rev. B 40, 3788–3801 (1989).
[Crossref]

1982 (1)

S. Adachi, “Material parameters of In1-xGax AsyP1-y and related binaries,” J. Appl. Phys. 53, 8775–8792 (1982).
[Crossref]

Adachi, S.

S. Adachi, “Material parameters of In1-xGax AsyP1-y and related binaries,” J. Appl. Phys. 53, 8775–8792 (1982).
[Crossref]

Binder, R.

D. T. Nguyen, N. H. Kwong, Z. S. Yang, R. Binder, and Arthur L. Smirl, “Mechanism of all-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 90, 181116 (2007).
[Crossref]

Cao, C.

J. P. Prineas, C. Cao, M. Yildirim, W. Johnston, and M. Reddy, “Resonant photonic band gap structures realized from molecular-beam-epitaxially growm InGaAs/GaAs Bragg-spaced quantum wells,” J. Appl. Phys. 100, 063101 (2006).
[Crossref]

Chang, T. Y.

M. Wegener, I. B. Joseph, G. Sucha, M. N. Islam, N. Sauer, T. Y. Chang, and D. S. Chemla, “Femtosecond dynamics of exciton absorption in the infrared InxGa1-xAs quantum wells,” Phys. Rev. B 39, 12794–12801 (1989).
[Crossref]

Chemla, D. S.

M. Wegener, I. B. Joseph, G. Sucha, M. N. Islam, N. Sauer, T. Y. Chang, and D. S. Chemla, “Femtosecond dynamics of exciton absorption in the infrared InxGa1-xAs quantum wells,” Phys. Rev. B 39, 12794–12801 (1989).
[Crossref]

Combescot, M.

M. Combescot and R. Combescot, “Optical Stark effect of the exciton: Biexcitonic origin of the shift,” Phys. Rev. B 40, 3788–3801 (1989).
[Crossref]

Combescot, R.

M. Combescot and R. Combescot, “Optical Stark effect of the exciton: Biexcitonic origin of the shift,” Phys. Rev. B 40, 3788–3801 (1989).
[Crossref]

Deych, L. I.

M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Optical properties of one-dimensional photonic crystals based on multiple-quantum-well structures,” Phys. Rev. B. 71, 235335 (2005).
[Crossref]

Erementchouk, M. V.

M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Optical properties of one-dimensional photonic crystals based on multiple-quantum-well structures,” Phys. Rev. B. 71, 235335 (2005).
[Crossref]

Fujii, T.

M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Room-temperature exciton optical absorption peaks in InGaAsP/InP multiple quantum wells,” Appl. Rev. Lett. 54, 1353–1355 (1989).
[Crossref]

Gibbs, H.

J. Prineas, J. Zhou, J. Kuhl, H. Gibbs, G. Khitrova, S. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81, 4332 (2002).
[Crossref]

Gibbs, H. M.

W. J. Johnston, M. Yildirim, J. P. Prineas, Arthur L. Smirla, H. M. Gibbs, and G. Khitrova, “All-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 87, 101113 (2005).
[Crossref]

Islam, M. N.

M. Wegener, I. B. Joseph, G. Sucha, M. N. Islam, N. Sauer, T. Y. Chang, and D. S. Chemla, “Femtosecond dynamics of exciton absorption in the infrared InxGa1-xAs quantum wells,” Phys. Rev. B 39, 12794–12801 (1989).
[Crossref]

Johnston, W.

J. P. Prineas, C. Cao, M. Yildirim, W. Johnston, and M. Reddy, “Resonant photonic band gap structures realized from molecular-beam-epitaxially growm InGaAs/GaAs Bragg-spaced quantum wells,” J. Appl. Phys. 100, 063101 (2006).
[Crossref]

Johnston, W. J.

W. J. Johnston, J. P. Prineas, and Arthur L. Smirl, “Ultrafast all-optical polarization switching in Bragg-spaced quantum wells at 80 K,” J. Appl. Phys. 101, 046101 (2007).
[Crossref]

W. J. Johnston, M. Yildirim, J. P. Prineas, Arthur L. Smirla, H. M. Gibbs, and G. Khitrova, “All-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 87, 101113 (2005).
[Crossref]

Joseph, I. B.

M. Wegener, I. B. Joseph, G. Sucha, M. N. Islam, N. Sauer, T. Y. Chang, and D. S. Chemla, “Femtosecond dynamics of exciton absorption in the infrared InxGa1-xAs quantum wells,” Phys. Rev. B 39, 12794–12801 (1989).
[Crossref]

Khitrova, G.

W. J. Johnston, M. Yildirim, J. P. Prineas, Arthur L. Smirla, H. M. Gibbs, and G. Khitrova, “All-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 87, 101113 (2005).
[Crossref]

J. Prineas, J. Zhou, J. Kuhl, H. Gibbs, G. Khitrova, S. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81, 4332 (2002).
[Crossref]

Knorr, A.

J. Prineas, J. Zhou, J. Kuhl, H. Gibbs, G. Khitrova, S. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81, 4332 (2002).
[Crossref]

Koch, S.

J. Prineas, J. Zhou, J. Kuhl, H. Gibbs, G. Khitrova, S. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81, 4332 (2002).
[Crossref]

Kuhl, J.

J. Prineas, J. Zhou, J. Kuhl, H. Gibbs, G. Khitrova, S. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81, 4332 (2002).
[Crossref]

Kwong, N. H.

D. T. Nguyen, N. H. Kwong, Z. S. Yang, R. Binder, and Arthur L. Smirl, “Mechanism of all-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 90, 181116 (2007).
[Crossref]

Lisyansky, A. A.

M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Optical properties of one-dimensional photonic crystals based on multiple-quantum-well structures,” Phys. Rev. B. 71, 235335 (2005).
[Crossref]

Nakajima, K.

M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Room-temperature exciton optical absorption peaks in InGaAsP/InP multiple quantum wells,” Appl. Rev. Lett. 54, 1353–1355 (1989).
[Crossref]

Nguyen, D. T.

D. T. Nguyen, N. H. Kwong, Z. S. Yang, R. Binder, and Arthur L. Smirl, “Mechanism of all-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 90, 181116 (2007).
[Crossref]

Prineas, J.

J. Prineas, J. Zhou, J. Kuhl, H. Gibbs, G. Khitrova, S. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81, 4332 (2002).
[Crossref]

Prineas, J. P.

W. J. Johnston, J. P. Prineas, and Arthur L. Smirl, “Ultrafast all-optical polarization switching in Bragg-spaced quantum wells at 80 K,” J. Appl. Phys. 101, 046101 (2007).
[Crossref]

J. P. Prineas, C. Cao, M. Yildirim, W. Johnston, and M. Reddy, “Resonant photonic band gap structures realized from molecular-beam-epitaxially growm InGaAs/GaAs Bragg-spaced quantum wells,” J. Appl. Phys. 100, 063101 (2006).
[Crossref]

W. J. Johnston, M. Yildirim, J. P. Prineas, Arthur L. Smirla, H. M. Gibbs, and G. Khitrova, “All-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 87, 101113 (2005).
[Crossref]

Reddy, M.

J. P. Prineas, C. Cao, M. Yildirim, W. Johnston, and M. Reddy, “Resonant photonic band gap structures realized from molecular-beam-epitaxially growm InGaAs/GaAs Bragg-spaced quantum wells,” J. Appl. Phys. 100, 063101 (2006).
[Crossref]

Sauer, N.

M. Wegener, I. B. Joseph, G. Sucha, M. N. Islam, N. Sauer, T. Y. Chang, and D. S. Chemla, “Femtosecond dynamics of exciton absorption in the infrared InxGa1-xAs quantum wells,” Phys. Rev. B 39, 12794–12801 (1989).
[Crossref]

Smirl, Arthur L.

D. T. Nguyen, N. H. Kwong, Z. S. Yang, R. Binder, and Arthur L. Smirl, “Mechanism of all-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 90, 181116 (2007).
[Crossref]

W. J. Johnston, J. P. Prineas, and Arthur L. Smirl, “Ultrafast all-optical polarization switching in Bragg-spaced quantum wells at 80 K,” J. Appl. Phys. 101, 046101 (2007).
[Crossref]

Smirla, Arthur L.

W. J. Johnston, M. Yildirim, J. P. Prineas, Arthur L. Smirla, H. M. Gibbs, and G. Khitrova, “All-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 87, 101113 (2005).
[Crossref]

Sucha, G.

M. Wegener, I. B. Joseph, G. Sucha, M. N. Islam, N. Sauer, T. Y. Chang, and D. S. Chemla, “Femtosecond dynamics of exciton absorption in the infrared InxGa1-xAs quantum wells,” Phys. Rev. B 39, 12794–12801 (1989).
[Crossref]

Sugawara, M.

M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Room-temperature exciton optical absorption peaks in InGaAsP/InP multiple quantum wells,” Appl. Rev. Lett. 54, 1353–1355 (1989).
[Crossref]

Wegener, M.

M. Wegener, I. B. Joseph, G. Sucha, M. N. Islam, N. Sauer, T. Y. Chang, and D. S. Chemla, “Femtosecond dynamics of exciton absorption in the infrared InxGa1-xAs quantum wells,” Phys. Rev. B 39, 12794–12801 (1989).
[Crossref]

Yamazaki, S.

M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Room-temperature exciton optical absorption peaks in InGaAsP/InP multiple quantum wells,” Appl. Rev. Lett. 54, 1353–1355 (1989).
[Crossref]

Yang, Z. S.

D. T. Nguyen, N. H. Kwong, Z. S. Yang, R. Binder, and Arthur L. Smirl, “Mechanism of all-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 90, 181116 (2007).
[Crossref]

Yildirim, M.

J. P. Prineas, C. Cao, M. Yildirim, W. Johnston, and M. Reddy, “Resonant photonic band gap structures realized from molecular-beam-epitaxially growm InGaAs/GaAs Bragg-spaced quantum wells,” J. Appl. Phys. 100, 063101 (2006).
[Crossref]

W. J. Johnston, M. Yildirim, J. P. Prineas, Arthur L. Smirla, H. M. Gibbs, and G. Khitrova, “All-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 87, 101113 (2005).
[Crossref]

Zhou, J.

J. Prineas, J. Zhou, J. Kuhl, H. Gibbs, G. Khitrova, S. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81, 4332 (2002).
[Crossref]

Appl. Phys. Lett. (3)

W. J. Johnston, M. Yildirim, J. P. Prineas, Arthur L. Smirla, H. M. Gibbs, and G. Khitrova, “All-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 87, 101113 (2005).
[Crossref]

J. Prineas, J. Zhou, J. Kuhl, H. Gibbs, G. Khitrova, S. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81, 4332 (2002).
[Crossref]

D. T. Nguyen, N. H. Kwong, Z. S. Yang, R. Binder, and Arthur L. Smirl, “Mechanism of all-optical spin-dependent polarization switching in Bragg-spaced quantum well structures,” Appl. Phys. Lett. 90, 181116 (2007).
[Crossref]

Appl. Rev. Lett. (1)

M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Room-temperature exciton optical absorption peaks in InGaAsP/InP multiple quantum wells,” Appl. Rev. Lett. 54, 1353–1355 (1989).
[Crossref]

J. Appl. Phys. (3)

S. Adachi, “Material parameters of In1-xGax AsyP1-y and related binaries,” J. Appl. Phys. 53, 8775–8792 (1982).
[Crossref]

W. J. Johnston, J. P. Prineas, and Arthur L. Smirl, “Ultrafast all-optical polarization switching in Bragg-spaced quantum wells at 80 K,” J. Appl. Phys. 101, 046101 (2007).
[Crossref]

J. P. Prineas, C. Cao, M. Yildirim, W. Johnston, and M. Reddy, “Resonant photonic band gap structures realized from molecular-beam-epitaxially growm InGaAs/GaAs Bragg-spaced quantum wells,” J. Appl. Phys. 100, 063101 (2006).
[Crossref]

Phys. Rev. B (2)

M. Combescot and R. Combescot, “Optical Stark effect of the exciton: Biexcitonic origin of the shift,” Phys. Rev. B 40, 3788–3801 (1989).
[Crossref]

M. Wegener, I. B. Joseph, G. Sucha, M. N. Islam, N. Sauer, T. Y. Chang, and D. S. Chemla, “Femtosecond dynamics of exciton absorption in the infrared InxGa1-xAs quantum wells,” Phys. Rev. B 39, 12794–12801 (1989).
[Crossref]

Phys. Rev. B. (1)

M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Optical properties of one-dimensional photonic crystals based on multiple-quantum-well structures,” Phys. Rev. B. 71, 235335 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup of all-optical polarization switch
Fig. 2.
Fig. 2. Calculated reflectivity stop band (solid line) of the 200 period BSQWs without the control pulse. A right circularly polarized, 12 MW/cm 2, 1 ps control pulse is indicated by the dashed line. A broadband signal pulse, 160 fs is indicated by the dashed-dotted line.
Fig. 3.
Fig. 3. Simulated contrast ratio as a function of control intensity (MW/cm 2) with τ=0.
Fig. 4.
Fig. 4. Simulated contrast ratio as a function of control-signal delay (τ) for a 12 MW/cm 2, 1 ps control pulse, and a 160 fs signal pulse
Fig. 5.
Fig. 5. Simulated insert loss as a function of control-signal delay (τ) for a 12 MW /cm 2, 1 ps control pulse, and a 160 fs signal pulse

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T = T b 1 2 T bw T w T wb T b 1 2
T b 1 2 = ( e i ϕ b 2 0 0 e i ϕ b 2 )
T bw = T wb 1 = 1 1 + ρ ( 1 ρ ρ 1 )
T w = ( e i ϕ w ( 1 iS ) iS iS e i ϕ w ( 1 + iS ) )
S = Γ 0 ω ω 0 + i Γ
Γ 0 = E 1 s 2 ε 0 n b ħ c g d c v 2 = 27.6 μ e V
R = r 01 + r 1 + r 01 r 2
{ I y = 0 I 0 ( ω ) 4 [ r + ( ω , t ) exp ( in + kL ) r ( ω , t ) exp ( in kL ) ] 2 d ω I y 0 = 0.006 % 0 I 0 ( ω ) R 0 ( ω ) d ω

Metrics