Abstract

The cascaded asymmetric exposure long-period fiber gratings are fabricated by CO2 laser, which provide multi-wavelength filters with anisotropic transmission spectrum under different states of polarization. Inserting this device in the ring cavity of an erbium-doped fiber laser, a triple-wavelength switchable lasing laser with equal spacing of 2.6nm has been obtained. Owing to the polarization dependent loss of the new cascaded long-period fiber grating, the wavelength switching of random combination of C 1 3, C 2 3 and C 3 3 is demonstrated through the polarization controlling. We derive the wavelength switch to the polarization characteristic of cascaded asymmetric exposure long-period fiber gratings.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
L-Band switchable dual-wavelength erbium-doped fiber laser based on a multimode fiber Bragg grating

Xinhuan Feng, Yange Liu, Shuzhong Yuan, Guiyun Kai, Weigang Zhang, and Xiaoyi Dong
Opt. Express 12(16) 3834-3839 (2004)

Single- and dual-wavelength switchable erbium-doped fiber ring laser based on intracavity polarization selective tilted fiber gratings

Chengbo Mou, Pouneh Saffari, Hongyan Fu, Kaiming Zhou, Lin Zhang, and Ian Bennion
Appl. Opt. 48(18) 3455-3459 (2009)

Switchable and tunable multiple-channel erbium-doped fiber laser using graphene-polymer nanocomposite and asymmetric two-stage fiber Sagnac loop filter

Min Zhou, Zhengqian Luo, Zhiping Cai, Chenchun Ye, Huiying Xu, and Jinzhang Wang
Appl. Opt. 50(18) 2940-2948 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. U. Jay, E. S. Price, G. M. Roque, S. B. Lisa, K. J. Carey, and R. Q. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14,9825–9831 (2006).
    [Crossref]
  2. Y. W. Lee, J. Jung, and B. H. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Tech. Lett. 16,54–56 (2004).
    [Crossref]
  3. S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Xia, “Switchable multiwavelength erbium-doped fiber ring laser with a multi-section high-birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 17,1387–1389 (2005).
    [Crossref]
  4. Y. W. Lee and B. Lee, “Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element,” IEEE Photon. Technol. Lett. 15,795–797 (2003).
    [Crossref]
  5. Q. H. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photon. Tech. Lett. 14,612–614 (2002).
    [Crossref]
  6. C. L. Zhao, X. F. Yang, C. Lu, H. N. Jun, X. Guo, C. P. Roy, and X. Y. Dong, “Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230,313–317 (2004).
    [Crossref]
  7. D. S. Moon, U. C. Paek, and Y. J. Chung, “Multi-wavelength linear-cavity tunable fiber laser using a chirped fiber Bragg grating and a few-mode fiber Bragg grating,” Opt. Express 13,5614–5620 (2005).
    [Crossref] [PubMed]
  8. M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17,552–554 (2005).
    [Crossref]
  9. B. L. Bachim and T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Appl. Opt. 42,6816–6823 (2003).
    [Crossref] [PubMed]
  10. Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89,151105–151108 (2006).
    [Crossref]
  11. C. Caucheteur, A. Fotiadi, P. Mégret, S. A. Slattery, and D. N. Nikogosyan, “Polarization properties of long-period gratings prepared by high-intensity femtosecond 352-nm pulses,” IEEE Photon. Technol. Lett. 17,2346–2349 (2005).
    [Crossref]
  12. S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett. 29,1464–1466 (2004).
    [Crossref] [PubMed]
  13. C. S. Kim, B. Choi, J. S. Nelson, Q. Li, P. Z. Dashti, and H. P. Lee, “Compensation of polarization-dependent loss in transmission fiber gratings by use of a Sagnac loop interferometer,” Opt. Lett. 30,20–22 (2005).
    [Crossref] [PubMed]
  14. X. J. Gu, “Wavelength-division multiplexing fiber filter and light source using cascaded long-period fiber gratings,” Opt. Lett. 23,509–510 (1998).
    [Crossref]

2006 (2)

R. U. Jay, E. S. Price, G. M. Roque, S. B. Lisa, K. J. Carey, and R. Q. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14,9825–9831 (2006).
[Crossref]

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89,151105–151108 (2006).
[Crossref]

2005 (5)

C. Caucheteur, A. Fotiadi, P. Mégret, S. A. Slattery, and D. N. Nikogosyan, “Polarization properties of long-period gratings prepared by high-intensity femtosecond 352-nm pulses,” IEEE Photon. Technol. Lett. 17,2346–2349 (2005).
[Crossref]

D. S. Moon, U. C. Paek, and Y. J. Chung, “Multi-wavelength linear-cavity tunable fiber laser using a chirped fiber Bragg grating and a few-mode fiber Bragg grating,” Opt. Express 13,5614–5620 (2005).
[Crossref] [PubMed]

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17,552–554 (2005).
[Crossref]

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Xia, “Switchable multiwavelength erbium-doped fiber ring laser with a multi-section high-birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 17,1387–1389 (2005).
[Crossref]

C. S. Kim, B. Choi, J. S. Nelson, Q. Li, P. Z. Dashti, and H. P. Lee, “Compensation of polarization-dependent loss in transmission fiber gratings by use of a Sagnac loop interferometer,” Opt. Lett. 30,20–22 (2005).
[Crossref] [PubMed]

2004 (3)

C. L. Zhao, X. F. Yang, C. Lu, H. N. Jun, X. Guo, C. P. Roy, and X. Y. Dong, “Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230,313–317 (2004).
[Crossref]

Y. W. Lee, J. Jung, and B. H. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Tech. Lett. 16,54–56 (2004).
[Crossref]

S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett. 29,1464–1466 (2004).
[Crossref] [PubMed]

2003 (2)

B. L. Bachim and T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Appl. Opt. 42,6816–6823 (2003).
[Crossref] [PubMed]

Y. W. Lee and B. Lee, “Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element,” IEEE Photon. Technol. Lett. 15,795–797 (2003).
[Crossref]

2002 (1)

Q. H. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photon. Tech. Lett. 14,612–614 (2002).
[Crossref]

1998 (1)

Andrés, M. V.

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17,552–554 (2005).
[Crossref]

Bachim, B. L.

Carey, K. J.

Caucheteur, C.

C. Caucheteur, A. Fotiadi, P. Mégret, S. A. Slattery, and D. N. Nikogosyan, “Polarization properties of long-period gratings prepared by high-intensity femtosecond 352-nm pulses,” IEEE Photon. Technol. Lett. 17,2346–2349 (2005).
[Crossref]

Choi, B.

Chung, Y.

Chung, Y. J.

Cruz, J. L.

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17,552–554 (2005).
[Crossref]

Dashti, P. Z.

Delgado-Pinar, M.

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17,552–554 (2005).
[Crossref]

Díez, A.

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17,552–554 (2005).
[Crossref]

Dong, X. Y.

C. L. Zhao, X. F. Yang, C. Lu, H. N. Jun, X. Guo, C. P. Roy, and X. Y. Dong, “Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230,313–317 (2004).
[Crossref]

Fotiadi, A.

C. Caucheteur, A. Fotiadi, P. Mégret, S. A. Slattery, and D. N. Nikogosyan, “Polarization properties of long-period gratings prepared by high-intensity femtosecond 352-nm pulses,” IEEE Photon. Technol. Lett. 17,2346–2349 (2005).
[Crossref]

Gaylord, T. K.

Gu, X. J.

Guo, X.

C. L. Zhao, X. F. Yang, C. Lu, H. N. Jun, X. Guo, C. P. Roy, and X. Y. Dong, “Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230,313–317 (2004).
[Crossref]

Hu, S.

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Xia, “Switchable multiwavelength erbium-doped fiber ring laser with a multi-section high-birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 17,1387–1389 (2005).
[Crossref]

Hui, R. Q.

Jay, R. U.

Jin, W.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89,151105–151108 (2006).
[Crossref]

Jun, H. N.

C. L. Zhao, X. F. Yang, C. Lu, H. N. Jun, X. Guo, C. P. Roy, and X. Y. Dong, “Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230,313–317 (2004).
[Crossref]

Jung, J.

Y. W. Lee, J. Jung, and B. H. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Tech. Lett. 16,54–56 (2004).
[Crossref]

Kim, C. S.

Lee, B.

Y. W. Lee and B. Lee, “Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element,” IEEE Photon. Technol. Lett. 15,795–797 (2003).
[Crossref]

Lee, B. H.

Y. W. Lee, J. Jung, and B. H. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Tech. Lett. 16,54–56 (2004).
[Crossref]

Lee, H. P.

Lee, K. R.

Lee, Y. W.

Y. W. Lee, J. Jung, and B. H. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Tech. Lett. 16,54–56 (2004).
[Crossref]

Y. W. Lee and B. Lee, “Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element,” IEEE Photon. Technol. Lett. 15,795–797 (2003).
[Crossref]

Li, Q.

Li, W.

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Xia, “Switchable multiwavelength erbium-doped fiber ring laser with a multi-section high-birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 17,1387–1389 (2005).
[Crossref]

Lisa, S. B.

Lit, J. W. Y.

Q. H. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photon. Tech. Lett. 14,612–614 (2002).
[Crossref]

Lu, C.

C. L. Zhao, X. F. Yang, C. Lu, H. N. Jun, X. Guo, C. P. Roy, and X. Y. Dong, “Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230,313–317 (2004).
[Crossref]

Luo, S. Y.

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Xia, “Switchable multiwavelength erbium-doped fiber ring laser with a multi-section high-birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 17,1387–1389 (2005).
[Crossref]

Mao, Q. H.

Q. H. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photon. Tech. Lett. 14,612–614 (2002).
[Crossref]

Mégret, P.

C. Caucheteur, A. Fotiadi, P. Mégret, S. A. Slattery, and D. N. Nikogosyan, “Polarization properties of long-period gratings prepared by high-intensity femtosecond 352-nm pulses,” IEEE Photon. Technol. Lett. 17,2346–2349 (2005).
[Crossref]

Moon, D. S.

Mora, J.

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17,552–554 (2005).
[Crossref]

Nelson, J. S.

Nikogosyan, D. N.

C. Caucheteur, A. Fotiadi, P. Mégret, S. A. Slattery, and D. N. Nikogosyan, “Polarization properties of long-period gratings prepared by high-intensity femtosecond 352-nm pulses,” IEEE Photon. Technol. Lett. 17,2346–2349 (2005).
[Crossref]

Oh, S.

Paek, U. C.

Peng, G. D.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89,151105–151108 (2006).
[Crossref]

Price, E. S.

Rao, Y. J.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89,151105–151108 (2006).
[Crossref]

Roque, G. M.

Roy, C. P.

C. L. Zhao, X. F. Yang, C. Lu, H. N. Jun, X. Guo, C. P. Roy, and X. Y. Dong, “Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230,313–317 (2004).
[Crossref]

Slattery, S. A.

C. Caucheteur, A. Fotiadi, P. Mégret, S. A. Slattery, and D. N. Nikogosyan, “Polarization properties of long-period gratings prepared by high-intensity femtosecond 352-nm pulses,” IEEE Photon. Technol. Lett. 17,2346–2349 (2005).
[Crossref]

Song, Y. J.

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Xia, “Switchable multiwavelength erbium-doped fiber ring laser with a multi-section high-birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 17,1387–1389 (2005).
[Crossref]

Wang, D. N.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89,151105–151108 (2006).
[Crossref]

Wang, Y. P.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89,151105–151108 (2006).
[Crossref]

Xia, Y. X.

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Xia, “Switchable multiwavelength erbium-doped fiber ring laser with a multi-section high-birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 17,1387–1389 (2005).
[Crossref]

Yang, X. F.

C. L. Zhao, X. F. Yang, C. Lu, H. N. Jun, X. Guo, C. P. Roy, and X. Y. Dong, “Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230,313–317 (2004).
[Crossref]

Zhan, L.

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Xia, “Switchable multiwavelength erbium-doped fiber ring laser with a multi-section high-birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 17,1387–1389 (2005).
[Crossref]

Zhao, C. L.

C. L. Zhao, X. F. Yang, C. Lu, H. N. Jun, X. Guo, C. P. Roy, and X. Y. Dong, “Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230,313–317 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89,151105–151108 (2006).
[Crossref]

IEEE Photon. Tech. Lett. (2)

Y. W. Lee, J. Jung, and B. H. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photon. Tech. Lett. 16,54–56 (2004).
[Crossref]

Q. H. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photon. Tech. Lett. 14,612–614 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (4)

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Xia, “Switchable multiwavelength erbium-doped fiber ring laser with a multi-section high-birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 17,1387–1389 (2005).
[Crossref]

Y. W. Lee and B. Lee, “Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element,” IEEE Photon. Technol. Lett. 15,795–797 (2003).
[Crossref]

C. Caucheteur, A. Fotiadi, P. Mégret, S. A. Slattery, and D. N. Nikogosyan, “Polarization properties of long-period gratings prepared by high-intensity femtosecond 352-nm pulses,” IEEE Photon. Technol. Lett. 17,2346–2349 (2005).
[Crossref]

M. Delgado-Pinar, J. Mora, A. Díez, J. L. Cruz, and M. V. Andrés, “Wavelength-switchable fiber laser using acoustic waves,” IEEE Photon. Technol. Lett. 17,552–554 (2005).
[Crossref]

Opt. Commun. (1)

C. L. Zhao, X. F. Yang, C. Lu, H. N. Jun, X. Guo, C. P. Roy, and X. Y. Dong, “Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230,313–317 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Asymmetric exposure during the fabrication of cascaded long-period fiber gratings. The phototropism side shows larger index change than the negative phototropism side, and it induces new polarization properties to the device.
Fig. 2.
Fig. 2. (a)Experiment setup for testing the spectrum change under different SOP. The fiber polarizer turns the light from the ASE source to linear polarized, the PC is using for controlling the SOP in the fiber. (b)Transmission spectrum change with 3 different SOP and the spectrum of a single LPFG, the insert figure is the detail situation around 1550nm-1565nm.
Fig. 3.
Fig. 3. Schematic of our MS-EDFL
Fig. 4.
Fig. 4. Switch of the laser output for one wavelength ((a), (c), (e)), dual-wavelength ((b), (d), (f)) and triple-wavelength with corresponding transmission spectrum ((g)).
Fig. 5.
Fig. 5. Repeat scan of the output spectrum, time interval 5 min.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

T = [ a exp [ j ϕ 1 ( λ ) ] 0 0 b exp [ j ϕ 2 ( λ ) ] ]
T total = T * T
= [ a exp [ j ϕ 1 ( λ ) ] 0 0 b exp [ j ϕ 2 ( λ ) ] ] [ a exp [ j ϕ 1 ( λ ) ] 0 0 b exp [ j ϕ 2 ( λ ) ] ]
= [ a 2 exp [ 2 j ϕ 1 ( λ ) ] 0 0 b 2 exp [ 2 j ϕ 2 ( λ ) ] ]
PD L 1 = 10 lg ( I out , max I out , min )
= 10 lg [ ( TE in 2 ) x ( TE in 2 ) y ]
= 10 lg [ ( a b ) 2 ]
PD L 2 = 10 lg [ I out , max I out , min ]
= 10 lg [ ( T total E in 2 ) x ( T total E in 2 ) y ]
= 10 lg [ ( a b ) 4 ]
= 2 * PD L 1

Metrics