Abstract

Arrays of nanodots were directly patterned by interferometric lithography using a bright table-top 46.9 nm laser. Multiple exposures with a Lloyd’s mirror interferometer allowed to print arrays of 60 nm FWHM features. This laser-based extreme ultraviolet interferometric technique makes possible to print different nanoscale patterns using a compact table-top set up.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interferometric lithography with an amplitude division interferometer and a desktop extreme ultraviolet laser

P. Wachulak, M. Grisham, S. Heinbuch, D. Martz, W. Rockward, D. Hill, J. J. Rocca, C. S. Menoni, E. Anderson, and M. Marconi
J. Opt. Soc. Am. B 25(7) B104-B107 (2008)

Extreme ultraviolet laser-based table-top aerial image metrology of lithographic masks

Fernando Brizuela, Sergio Carbajo, Anne Sakdinawat, David Alessi, Dale H. Martz, Yong Wang, Bradley Luther, Kenneth A. Goldberg, Iacopo Mochi, David T. Attwood, Bruno La Fontaine, Jorge J. Rocca, and Carmen S. Menoni
Opt. Express 18(14) 14467-14473 (2010)

Extreme ultraviolet Talbot interference lithography

Wei Li and Mario C. Marconi
Opt. Express 23(20) 25532-25538 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. J. Castano, D. Morecroft, W. Jung, and C. A. Ross, “Spin-dependent scattering in multilayered magnetic rings,” Phys. Rev. Lett 95,137201, (2005).
    [Crossref] [PubMed]
  2. F. J. Castano, C. A. Ross, A. Eilez, W. Jung, and C. Frandsen, “Magnetic configurations in 160-520-nm-diameter ferromagnetic rings,” Phys. Rev. B 69,144421, (2004).
    [Crossref]
  3. F. J. Castano, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67,184425, (2003).
    [Crossref]
  4. Y. Chen, A. Lebib, S. P. Li, M. Natali, D. Peyrade, and E. Cambril, “Nanoimprint fabrication of micro-rings for magnetization reversal studies,” Microelectron. Eng 57-8,405, (2001).
    [Crossref]
  5. J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Phys. Rev. Lett 84,3149, (2000).
    [Crossref] [PubMed]
  6. A. Lebib, S. P. Li, M Natali, and Y. Chen, “Size and thickness dependencies of magnetization reversal in Co dot arrays,” J. Appl. Phys 89,3892, (2001).
    [Crossref]
  7. E. Saitoh, K. Harii, H. Miyajima, T. Yamaoka, and S. Okuma, “Critical phenomena in chiral symmetry breakdown of micromagnetic configurations in a nanostructured ferromagnetic ring,” Phys. Rev. B 71,172406, (2005).
    [Crossref]
  8. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G.de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett 90,057401, (2003).
    [Crossref] [PubMed]
  9. Y. N. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev 99,1823, (1999).
    [Crossref]
  10. M. Geissler and Y. N. Xia, “Patterning: Principles and some new developments,” Advanced Materials 16,1249, (2004).
    [Crossref]
  11. W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vacuum Science Technol. B 23,2700, (2005).
    [Crossref]
  12. A. Fernandez, Y. J. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vacuum Science Technol. B 15,2439, (1997).
    [Crossref]
  13. M. Switkes, T. M. Bloomstein, and M. Rothschild, “Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography,” Appl. Phys. Lett 77,3149, (2000).
    [Crossref]
  14. H. H. Solak, “Nanolithography with coherent extreme ultraviolet light,” J. Phys. D 39,R171–R188, (2006).
    [Crossref]
  15. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng 67-8,56, (2003).
    [Crossref]
  16. H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography,” Appl. Phys. Lett 75,2328, (1999).
    [Crossref]
  17. Y. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 6303,033802, (2001).
    [Crossref]
  18. Y. W. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Spatial coherence measurement of a high average power table-top soft X-ray laser,” Journal De Physique IV 11,123, (2001).
  19. I. Junarsa, M. P. Stoykovich, P. F. Nealey, Y. S. Ma, and F. Cerrina, “Hydrogen silsesquioxane as a high resolution negative-tone resist for extreme ultraviolet lithography,” J. Vacuum Science Technol. B 23,138, (2005).
    [Crossref]

2006 (1)

H. H. Solak, “Nanolithography with coherent extreme ultraviolet light,” J. Phys. D 39,R171–R188, (2006).
[Crossref]

2005 (4)

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vacuum Science Technol. B 23,2700, (2005).
[Crossref]

I. Junarsa, M. P. Stoykovich, P. F. Nealey, Y. S. Ma, and F. Cerrina, “Hydrogen silsesquioxane as a high resolution negative-tone resist for extreme ultraviolet lithography,” J. Vacuum Science Technol. B 23,138, (2005).
[Crossref]

F. J. Castano, D. Morecroft, W. Jung, and C. A. Ross, “Spin-dependent scattering in multilayered magnetic rings,” Phys. Rev. Lett 95,137201, (2005).
[Crossref] [PubMed]

E. Saitoh, K. Harii, H. Miyajima, T. Yamaoka, and S. Okuma, “Critical phenomena in chiral symmetry breakdown of micromagnetic configurations in a nanostructured ferromagnetic ring,” Phys. Rev. B 71,172406, (2005).
[Crossref]

2004 (2)

M. Geissler and Y. N. Xia, “Patterning: Principles and some new developments,” Advanced Materials 16,1249, (2004).
[Crossref]

F. J. Castano, C. A. Ross, A. Eilez, W. Jung, and C. Frandsen, “Magnetic configurations in 160-520-nm-diameter ferromagnetic rings,” Phys. Rev. B 69,144421, (2004).
[Crossref]

2003 (3)

F. J. Castano, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67,184425, (2003).
[Crossref]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G.de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett 90,057401, (2003).
[Crossref] [PubMed]

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng 67-8,56, (2003).
[Crossref]

2001 (4)

Y. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 6303,033802, (2001).
[Crossref]

Y. W. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Spatial coherence measurement of a high average power table-top soft X-ray laser,” Journal De Physique IV 11,123, (2001).

A. Lebib, S. P. Li, M Natali, and Y. Chen, “Size and thickness dependencies of magnetization reversal in Co dot arrays,” J. Appl. Phys 89,3892, (2001).
[Crossref]

Y. Chen, A. Lebib, S. P. Li, M. Natali, D. Peyrade, and E. Cambril, “Nanoimprint fabrication of micro-rings for magnetization reversal studies,” Microelectron. Eng 57-8,405, (2001).
[Crossref]

2000 (2)

J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Phys. Rev. Lett 84,3149, (2000).
[Crossref] [PubMed]

M. Switkes, T. M. Bloomstein, and M. Rothschild, “Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography,” Appl. Phys. Lett 77,3149, (2000).
[Crossref]

1999 (2)

H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography,” Appl. Phys. Lett 75,2328, (1999).
[Crossref]

Y. N. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev 99,1823, (1999).
[Crossref]

1997 (1)

A. Fernandez, Y. J. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vacuum Science Technol. B 15,2439, (1997).
[Crossref]

Abajo, F. J. G.de

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G.de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett 90,057401, (2003).
[Crossref] [PubMed]

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G.de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett 90,057401, (2003).
[Crossref] [PubMed]

Albert, F. J.

J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Phys. Rev. Lett 84,3149, (2000).
[Crossref] [PubMed]

Attwood, D. T.

Y. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 6303,033802, (2001).
[Crossref]

Y. W. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Spatial coherence measurement of a high average power table-top soft X-ray laser,” Journal De Physique IV 11,123, (2001).

Bloomstein, T. M.

M. Switkes, T. M. Bloomstein, and M. Rothschild, “Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography,” Appl. Phys. Lett 77,3149, (2000).
[Crossref]

Brueck, S. R. J.

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vacuum Science Technol. B 23,2700, (2005).
[Crossref]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G.de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett 90,057401, (2003).
[Crossref] [PubMed]

Buhrman, R. A.

J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Phys. Rev. Lett 84,3149, (2000).
[Crossref] [PubMed]

Cambril, E.

Y. Chen, A. Lebib, S. P. Li, M. Natali, D. Peyrade, and E. Cambril, “Nanoimprint fabrication of micro-rings for magnetization reversal studies,” Microelectron. Eng 57-8,405, (2001).
[Crossref]

Castano, F. J.

F. J. Castano, D. Morecroft, W. Jung, and C. A. Ross, “Spin-dependent scattering in multilayered magnetic rings,” Phys. Rev. Lett 95,137201, (2005).
[Crossref] [PubMed]

F. J. Castano, C. A. Ross, A. Eilez, W. Jung, and C. Frandsen, “Magnetic configurations in 160-520-nm-diameter ferromagnetic rings,” Phys. Rev. B 69,144421, (2004).
[Crossref]

F. J. Castano, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67,184425, (2003).
[Crossref]

Cerrina, F.

I. Junarsa, M. P. Stoykovich, P. F. Nealey, Y. S. Ma, and F. Cerrina, “Hydrogen silsesquioxane as a high resolution negative-tone resist for extreme ultraviolet lithography,” J. Vacuum Science Technol. B 23,138, (2005).
[Crossref]

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng 67-8,56, (2003).
[Crossref]

H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography,” Appl. Phys. Lett 75,2328, (1999).
[Crossref]

Chang, C.

Y. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 6303,033802, (2001).
[Crossref]

Y. W. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Spatial coherence measurement of a high average power table-top soft X-ray laser,” Journal De Physique IV 11,123, (2001).

Chen, Y.

A. Lebib, S. P. Li, M Natali, and Y. Chen, “Size and thickness dependencies of magnetization reversal in Co dot arrays,” J. Appl. Phys 89,3892, (2001).
[Crossref]

Y. Chen, A. Lebib, S. P. Li, M. Natali, D. Peyrade, and E. Cambril, “Nanoimprint fabrication of micro-rings for magnetization reversal studies,” Microelectron. Eng 57-8,405, (2001).
[Crossref]

David, C.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng 67-8,56, (2003).
[Crossref]

Decker, Y. J.

A. Fernandez, Y. J. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vacuum Science Technol. B 15,2439, (1997).
[Crossref]

Eilez, A.

F. J. Castano, C. A. Ross, A. Eilez, W. Jung, and C. Frandsen, “Magnetic configurations in 160-520-nm-diameter ferromagnetic rings,” Phys. Rev. B 69,144421, (2004).
[Crossref]

F. J. Castano, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67,184425, (2003).
[Crossref]

Fan, W. J.

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vacuum Science Technol. B 23,2700, (2005).
[Crossref]

Fernandez, A.

A. Fernandez, Y. J. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vacuum Science Technol. B 15,2439, (1997).
[Crossref]

Frandsen, C.

F. J. Castano, C. A. Ross, A. Eilez, W. Jung, and C. Frandsen, “Magnetic configurations in 160-520-nm-diameter ferromagnetic rings,” Phys. Rev. B 69,144421, (2004).
[Crossref]

F. J. Castano, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67,184425, (2003).
[Crossref]

Geissler, M.

M. Geissler and Y. N. Xia, “Patterning: Principles and some new developments,” Advanced Materials 16,1249, (2004).
[Crossref]

Gil, D.

F. J. Castano, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67,184425, (2003).
[Crossref]

Gobrecht, J.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng 67-8,56, (2003).
[Crossref]

Golovkina, V.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng 67-8,56, (2003).
[Crossref]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G.de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett 90,057401, (2003).
[Crossref] [PubMed]

Harii, K.

E. Saitoh, K. Harii, H. Miyajima, T. Yamaoka, and S. Okuma, “Critical phenomena in chiral symmetry breakdown of micromagnetic configurations in a nanostructured ferromagnetic ring,” Phys. Rev. B 71,172406, (2005).
[Crossref]

He, D.

H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography,” Appl. Phys. Lett 75,2328, (1999).
[Crossref]

Herman, S. M.

A. Fernandez, Y. J. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vacuum Science Technol. B 15,2439, (1997).
[Crossref]

Humphrey, F. B.

F. J. Castano, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67,184425, (2003).
[Crossref]

Junarsa, I.

I. Junarsa, M. P. Stoykovich, P. F. Nealey, Y. S. Ma, and F. Cerrina, “Hydrogen silsesquioxane as a high resolution negative-tone resist for extreme ultraviolet lithography,” J. Vacuum Science Technol. B 23,138, (2005).
[Crossref]

Jung, W.

F. J. Castano, D. Morecroft, W. Jung, and C. A. Ross, “Spin-dependent scattering in multilayered magnetic rings,” Phys. Rev. Lett 95,137201, (2005).
[Crossref] [PubMed]

F. J. Castano, C. A. Ross, A. Eilez, W. Jung, and C. Frandsen, “Magnetic configurations in 160-520-nm-diameter ferromagnetic rings,” Phys. Rev. B 69,144421, (2004).
[Crossref]

Kall, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G.de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett 90,057401, (2003).
[Crossref] [PubMed]

Katine, J. A.

J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Phys. Rev. Lett 84,3149, (2000).
[Crossref] [PubMed]

Kim, S. O.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng 67-8,56, (2003).
[Crossref]

Lebib, A.

A. Lebib, S. P. Li, M Natali, and Y. Chen, “Size and thickness dependencies of magnetization reversal in Co dot arrays,” J. Appl. Phys 89,3892, (2001).
[Crossref]

Y. Chen, A. Lebib, S. P. Li, M. Natali, D. Peyrade, and E. Cambril, “Nanoimprint fabrication of micro-rings for magnetization reversal studies,” Microelectron. Eng 57-8,405, (2001).
[Crossref]

Li, S. P.

Y. Chen, A. Lebib, S. P. Li, M. Natali, D. Peyrade, and E. Cambril, “Nanoimprint fabrication of micro-rings for magnetization reversal studies,” Microelectron. Eng 57-8,405, (2001).
[Crossref]

A. Lebib, S. P. Li, M Natali, and Y. Chen, “Size and thickness dependencies of magnetization reversal in Co dot arrays,” J. Appl. Phys 89,3892, (2001).
[Crossref]

Li, W.

H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography,” Appl. Phys. Lett 75,2328, (1999).
[Crossref]

Liu, Y.

Y. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 6303,033802, (2001).
[Crossref]

Liu, Y. W.

Y. W. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Spatial coherence measurement of a high average power table-top soft X-ray laser,” Journal De Physique IV 11,123, (2001).

Ma, Y. S.

I. Junarsa, M. P. Stoykovich, P. F. Nealey, Y. S. Ma, and F. Cerrina, “Hydrogen silsesquioxane as a high resolution negative-tone resist for extreme ultraviolet lithography,” J. Vacuum Science Technol. B 23,138, (2005).
[Crossref]

Malloy, K. J.

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vacuum Science Technol. B 23,2700, (2005).
[Crossref]

Miyajima, H.

E. Saitoh, K. Harii, H. Miyajima, T. Yamaoka, and S. Okuma, “Critical phenomena in chiral symmetry breakdown of micromagnetic configurations in a nanostructured ferromagnetic ring,” Phys. Rev. B 71,172406, (2005).
[Crossref]

Morecroft, D.

F. J. Castano, D. Morecroft, W. Jung, and C. A. Ross, “Spin-dependent scattering in multilayered magnetic rings,” Phys. Rev. Lett 95,137201, (2005).
[Crossref] [PubMed]

Myers, E. B.

J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Phys. Rev. Lett 84,3149, (2000).
[Crossref] [PubMed]

Natali, M

A. Lebib, S. P. Li, M Natali, and Y. Chen, “Size and thickness dependencies of magnetization reversal in Co dot arrays,” J. Appl. Phys 89,3892, (2001).
[Crossref]

Natali, M.

Y. Chen, A. Lebib, S. P. Li, M. Natali, D. Peyrade, and E. Cambril, “Nanoimprint fabrication of micro-rings for magnetization reversal studies,” Microelectron. Eng 57-8,405, (2001).
[Crossref]

Nealey, P.

H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography,” Appl. Phys. Lett 75,2328, (1999).
[Crossref]

Nealey, P. F.

I. Junarsa, M. P. Stoykovich, P. F. Nealey, Y. S. Ma, and F. Cerrina, “Hydrogen silsesquioxane as a high resolution negative-tone resist for extreme ultraviolet lithography,” J. Vacuum Science Technol. B 23,138, (2005).
[Crossref]

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng 67-8,56, (2003).
[Crossref]

Okuma, S.

E. Saitoh, K. Harii, H. Miyajima, T. Yamaoka, and S. Okuma, “Critical phenomena in chiral symmetry breakdown of micromagnetic configurations in a nanostructured ferromagnetic ring,” Phys. Rev. B 71,172406, (2005).
[Crossref]

Paul, K. E.

Y. N. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev 99,1823, (1999).
[Crossref]

Perry, M. D.

A. Fernandez, Y. J. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vacuum Science Technol. B 15,2439, (1997).
[Crossref]

Peyrade, D.

Y. Chen, A. Lebib, S. P. Li, M. Natali, D. Peyrade, and E. Cambril, “Nanoimprint fabrication of micro-rings for magnetization reversal studies,” Microelectron. Eng 57-8,405, (2001).
[Crossref]

Phillion, D. W.

A. Fernandez, Y. J. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vacuum Science Technol. B 15,2439, (1997).
[Crossref]

Ralph, D. C.

J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Phys. Rev. Lett 84,3149, (2000).
[Crossref] [PubMed]

Redjdal, M.

F. J. Castano, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67,184425, (2003).
[Crossref]

Rocca, J. J.

Y. W. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Spatial coherence measurement of a high average power table-top soft X-ray laser,” Journal De Physique IV 11,123, (2001).

Y. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 6303,033802, (2001).
[Crossref]

Rogers, J. A.

Y. N. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev 99,1823, (1999).
[Crossref]

Ross, C. A.

F. J. Castano, D. Morecroft, W. Jung, and C. A. Ross, “Spin-dependent scattering in multilayered magnetic rings,” Phys. Rev. Lett 95,137201, (2005).
[Crossref] [PubMed]

F. J. Castano, C. A. Ross, A. Eilez, W. Jung, and C. Frandsen, “Magnetic configurations in 160-520-nm-diameter ferromagnetic rings,” Phys. Rev. B 69,144421, (2004).
[Crossref]

F. J. Castano, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67,184425, (2003).
[Crossref]

Rothschild, M.

M. Switkes, T. M. Bloomstein, and M. Rothschild, “Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography,” Appl. Phys. Lett 77,3149, (2000).
[Crossref]

Saitoh, E.

E. Saitoh, K. Harii, H. Miyajima, T. Yamaoka, and S. Okuma, “Critical phenomena in chiral symmetry breakdown of micromagnetic configurations in a nanostructured ferromagnetic ring,” Phys. Rev. B 71,172406, (2005).
[Crossref]

Seminario, M.

Y. W. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Spatial coherence measurement of a high average power table-top soft X-ray laser,” Journal De Physique IV 11,123, (2001).

Y. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 6303,033802, (2001).
[Crossref]

Singh-Gasson, S.

H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography,” Appl. Phys. Lett 75,2328, (1999).
[Crossref]

Smith, H. I.

F. J. Castano, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67,184425, (2003).
[Crossref]

Sohn, B. H.

H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography,” Appl. Phys. Lett 75,2328, (1999).
[Crossref]

Solak, H. H.

H. H. Solak, “Nanolithography with coherent extreme ultraviolet light,” J. Phys. D 39,R171–R188, (2006).
[Crossref]

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng 67-8,56, (2003).
[Crossref]

H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography,” Appl. Phys. Lett 75,2328, (1999).
[Crossref]

Stoykovich, M. P.

I. Junarsa, M. P. Stoykovich, P. F. Nealey, Y. S. Ma, and F. Cerrina, “Hydrogen silsesquioxane as a high resolution negative-tone resist for extreme ultraviolet lithography,” J. Vacuum Science Technol. B 23,138, (2005).
[Crossref]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G.de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett 90,057401, (2003).
[Crossref] [PubMed]

Sweeney, D. W.

A. Fernandez, Y. J. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vacuum Science Technol. B 15,2439, (1997).
[Crossref]

Switkes, M.

M. Switkes, T. M. Bloomstein, and M. Rothschild, “Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography,” Appl. Phys. Lett 77,3149, (2000).
[Crossref]

Tomasel, F. J.

Y. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 6303,033802, (2001).
[Crossref]

Y. W. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Spatial coherence measurement of a high average power table-top soft X-ray laser,” Journal De Physique IV 11,123, (2001).

Whitesides, G. M.

Y. N. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev 99,1823, (1999).
[Crossref]

Xia, Y. N.

M. Geissler and Y. N. Xia, “Patterning: Principles and some new developments,” Advanced Materials 16,1249, (2004).
[Crossref]

Y. N. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev 99,1823, (1999).
[Crossref]

Yamaoka, T.

E. Saitoh, K. Harii, H. Miyajima, T. Yamaoka, and S. Okuma, “Critical phenomena in chiral symmetry breakdown of micromagnetic configurations in a nanostructured ferromagnetic ring,” Phys. Rev. B 71,172406, (2005).
[Crossref]

Yang, X. M.

H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography,” Appl. Phys. Lett 75,2328, (1999).
[Crossref]

Zhang, S.

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vacuum Science Technol. B 23,2700, (2005).
[Crossref]

Advanced Materials (1)

M. Geissler and Y. N. Xia, “Patterning: Principles and some new developments,” Advanced Materials 16,1249, (2004).
[Crossref]

Appl. Phys. Lett (2)

M. Switkes, T. M. Bloomstein, and M. Rothschild, “Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography,” Appl. Phys. Lett 77,3149, (2000).
[Crossref]

H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography,” Appl. Phys. Lett 75,2328, (1999).
[Crossref]

Chem. Rev (1)

Y. N. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev 99,1823, (1999).
[Crossref]

J. Appl. Phys (1)

A. Lebib, S. P. Li, M Natali, and Y. Chen, “Size and thickness dependencies of magnetization reversal in Co dot arrays,” J. Appl. Phys 89,3892, (2001).
[Crossref]

J. Phys. D (1)

H. H. Solak, “Nanolithography with coherent extreme ultraviolet light,” J. Phys. D 39,R171–R188, (2006).
[Crossref]

J. Vacuum Science Technol. B (3)

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vacuum Science Technol. B 23,2700, (2005).
[Crossref]

A. Fernandez, Y. J. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vacuum Science Technol. B 15,2439, (1997).
[Crossref]

I. Junarsa, M. P. Stoykovich, P. F. Nealey, Y. S. Ma, and F. Cerrina, “Hydrogen silsesquioxane as a high resolution negative-tone resist for extreme ultraviolet lithography,” J. Vacuum Science Technol. B 23,138, (2005).
[Crossref]

Journal De Physique IV (1)

Y. W. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Spatial coherence measurement of a high average power table-top soft X-ray laser,” Journal De Physique IV 11,123, (2001).

Microelectron. Eng (2)

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng 67-8,56, (2003).
[Crossref]

Y. Chen, A. Lebib, S. P. Li, M. Natali, D. Peyrade, and E. Cambril, “Nanoimprint fabrication of micro-rings for magnetization reversal studies,” Microelectron. Eng 57-8,405, (2001).
[Crossref]

Phys. Rev. A (1)

Y. Liu, M. Seminario, F. J. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 6303,033802, (2001).
[Crossref]

Phys. Rev. B (3)

F. J. Castano, C. A. Ross, A. Eilez, W. Jung, and C. Frandsen, “Magnetic configurations in 160-520-nm-diameter ferromagnetic rings,” Phys. Rev. B 69,144421, (2004).
[Crossref]

F. J. Castano, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67,184425, (2003).
[Crossref]

E. Saitoh, K. Harii, H. Miyajima, T. Yamaoka, and S. Okuma, “Critical phenomena in chiral symmetry breakdown of micromagnetic configurations in a nanostructured ferromagnetic ring,” Phys. Rev. B 71,172406, (2005).
[Crossref]

Phys. Rev. Lett (3)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G.de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett 90,057401, (2003).
[Crossref] [PubMed]

F. J. Castano, D. Morecroft, W. Jung, and C. A. Ross, “Spin-dependent scattering in multilayered magnetic rings,” Phys. Rev. Lett 95,137201, (2005).
[Crossref] [PubMed]

J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Phys. Rev. Lett 84,3149, (2000).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Lloyd’s mirror set up for two steps exposure. The sample is rotated an arbitrary angle around an axis perpendicular to the sample surface to obtain different motifs.
Fig. 2.
Fig. 2. Computed (a) and fabricated (b) arrays of holes patterned in PMMA by double exposure with a Lloyd’s mirror configuration, α = π/2 and low (10 mJcm-2) photon dose.
Fig. 3.
Fig. 3. Computed (a) and fabricated (b) arrays of cone-shaped nano-dots patterned in PMMA by double exposure with a Lloyd’s mirror configuration, with α = π/2 and high (30 mJ cm-2) photon dose.
Fig. 4.
Fig. 4. Magnified view of a smaller area of the array in figure 3, showing the cone-shaped nano-dots. The FWHM of the nano-dot is approximately 60 nm and the period is nominally 150 nm.

Metrics