Abstract

In this letter, we extend the results previously found in near field imaging with aperture [Opt. Express 14, 11566 (2006)], where we demonstrated that interaction between light and sample can be divided into two main areas: the true near field and the contrast near field domain. Here, we show that in near field with a probe, the same division of space exists, and thus we show that a much simpler way to model theses experiments can be given.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
True near field versus contrast near field imaging

Jean-Baptiste Masson and Guilhem Gallot
Opt. Express 14(24) 11566-11574 (2006)

Offset-apertured near-field scanning optical microscope probes

M. C. Quong and A. Y. Elezzabi
Opt. Express 15(16) 10163-10174 (2007)

A nanoplasmonic probe for near-field imaging

J. A. J. Backs, S. Sederberg, and A. Y. Elezzabi
Opt. Express 19(12) 11280-11289 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J.-B. masson and G. Gallot, “True near field versus contrast near field imaging,” Opt. Express 14,11566–11574 (2006).
    [Crossref] [PubMed]
  2. A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nature biotechnol. 21,1378–1386 (2003).
    [Crossref]
  3. Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B. Ming, P. G. Schultz, and X.-D. Xiang, “Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope,” Science 276,2004–2006 (1997).
    [Crossref]
  4. D. Molenda, G. C. d. Francs, U. C. Fischer, N. Rau, and A. Naber, “High-resolution mapping of the optical near-field components at a triangular nano-aperture,” Opt. Express 13,10688–10696 (2005).
    [Crossref] [PubMed]
  5. J. P. Fillard, Near Field Optics and Nanoscopy, (World Scientific, Singapore, 1996).
  6. Comsol. Burlington, MA, USA, Version 3.3.
  7. M. A. Bhatti, Fundamental Finite Element Analysis and Applications: With Mathematica and Matlab Computations, (J. Wiley & Sons, Hoboken, New Jersey, 2005).
  8. J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near field imaging of axonal water fluxes,” Proc. Nat. Acad. Sci. USA 103,4808–4812 (2006).
    [Crossref] [PubMed]
  9. J.-B. masson, M.-P. Sauviat, and G. Gallot, “Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity,” Appl. Phys. Lett. 89,153904 (2006).
    [Crossref]
  10. M. Born and E. Wolf, Principles of optics 6th Edition. (Cambridge University Press, Cambridge, 1997).
  11. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90,013903 (2003).
    [Crossref] [PubMed]
  12. H. Cory, A. C. Boccara, J. C. Rivoal, and A. Lahrech, “Electric field intensity variation in the vicinity of a perfectly conducting conical probe: Application to near-field microscopy,” Microwave Opt. Technol. Lett. 18,120–124 (1998).
    [Crossref]

2006 (3)

J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near field imaging of axonal water fluxes,” Proc. Nat. Acad. Sci. USA 103,4808–4812 (2006).
[Crossref] [PubMed]

J.-B. masson, M.-P. Sauviat, and G. Gallot, “Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity,” Appl. Phys. Lett. 89,153904 (2006).
[Crossref]

J.-B. masson and G. Gallot, “True near field versus contrast near field imaging,” Opt. Express 14,11566–11574 (2006).
[Crossref] [PubMed]

2005 (1)

2003 (2)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nature biotechnol. 21,1378–1386 (2003).
[Crossref]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90,013903 (2003).
[Crossref] [PubMed]

1998 (1)

H. Cory, A. C. Boccara, J. C. Rivoal, and A. Lahrech, “Electric field intensity variation in the vicinity of a perfectly conducting conical probe: Application to near-field microscopy,” Microwave Opt. Technol. Lett. 18,120–124 (1998).
[Crossref]

1997 (1)

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B. Ming, P. G. Schultz, and X.-D. Xiang, “Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope,” Science 276,2004–2006 (1997).
[Crossref]

Ammann, E.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nature biotechnol. 21,1378–1386 (2003).
[Crossref]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90,013903 (2003).
[Crossref] [PubMed]

Bhatti, M. A.

M. A. Bhatti, Fundamental Finite Element Analysis and Applications: With Mathematica and Matlab Computations, (J. Wiley & Sons, Hoboken, New Jersey, 2005).

Boccara, A. C.

H. Cory, A. C. Boccara, J. C. Rivoal, and A. Lahrech, “Electric field intensity variation in the vicinity of a perfectly conducting conical probe: Application to near-field microscopy,” Microwave Opt. Technol. Lett. 18,120–124 (1998).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of optics 6th Edition. (Cambridge University Press, Cambridge, 1997).

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90,013903 (2003).
[Crossref] [PubMed]

Cory, H.

H. Cory, A. C. Boccara, J. C. Rivoal, and A. Lahrech, “Electric field intensity variation in the vicinity of a perfectly conducting conical probe: Application to near-field microscopy,” Microwave Opt. Technol. Lett. 18,120–124 (1998).
[Crossref]

Dekhter, R.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nature biotechnol. 21,1378–1386 (2003).
[Crossref]

Duewer, F.

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B. Ming, P. G. Schultz, and X.-D. Xiang, “Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope,” Science 276,2004–2006 (1997).
[Crossref]

Fillard, J. P.

J. P. Fillard, Near Field Optics and Nanoscopy, (World Scientific, Singapore, 1996).

Fischer, U. C.

Francs, G. C. d.

Gallot, G.

J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near field imaging of axonal water fluxes,” Proc. Nat. Acad. Sci. USA 103,4808–4812 (2006).
[Crossref] [PubMed]

J.-B. masson, M.-P. Sauviat, and G. Gallot, “Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity,” Appl. Phys. Lett. 89,153904 (2006).
[Crossref]

J.-B. masson and G. Gallot, “True near field versus contrast near field imaging,” Opt. Express 14,11566–11574 (2006).
[Crossref] [PubMed]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90,013903 (2003).
[Crossref] [PubMed]

Khatchatouriants, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nature biotechnol. 21,1378–1386 (2003).
[Crossref]

Lahrech, A.

H. Cory, A. C. Boccara, J. C. Rivoal, and A. Lahrech, “Electric field intensity variation in the vicinity of a perfectly conducting conical probe: Application to near-field microscopy,” Microwave Opt. Technol. Lett. 18,120–124 (1998).
[Crossref]

Lewis, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nature biotechnol. 21,1378–1386 (2003).
[Crossref]

Lu, Y.

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B. Ming, P. G. Schultz, and X.-D. Xiang, “Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope,” Science 276,2004–2006 (1997).
[Crossref]

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B. Ming, P. G. Schultz, and X.-D. Xiang, “Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope,” Science 276,2004–2006 (1997).
[Crossref]

Manevitch, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nature biotechnol. 21,1378–1386 (2003).
[Crossref]

Martin, J.-L.

J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near field imaging of axonal water fluxes,” Proc. Nat. Acad. Sci. USA 103,4808–4812 (2006).
[Crossref] [PubMed]

masson, J.-B.

J.-B. masson, M.-P. Sauviat, and G. Gallot, “Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity,” Appl. Phys. Lett. 89,153904 (2006).
[Crossref]

J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near field imaging of axonal water fluxes,” Proc. Nat. Acad. Sci. USA 103,4808–4812 (2006).
[Crossref] [PubMed]

J.-B. masson and G. Gallot, “True near field versus contrast near field imaging,” Opt. Express 14,11566–11574 (2006).
[Crossref] [PubMed]

Ming, N.-B.

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B. Ming, P. G. Schultz, and X.-D. Xiang, “Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope,” Science 276,2004–2006 (1997).
[Crossref]

Molenda, D.

Naber, A.

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90,013903 (2003).
[Crossref] [PubMed]

Rau, N.

Rivoal, J. C.

H. Cory, A. C. Boccara, J. C. Rivoal, and A. Lahrech, “Electric field intensity variation in the vicinity of a perfectly conducting conical probe: Application to near-field microscopy,” Microwave Opt. Technol. Lett. 18,120–124 (1998).
[Crossref]

Sauviat, M.-P.

J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near field imaging of axonal water fluxes,” Proc. Nat. Acad. Sci. USA 103,4808–4812 (2006).
[Crossref] [PubMed]

J.-B. masson, M.-P. Sauviat, and G. Gallot, “Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity,” Appl. Phys. Lett. 89,153904 (2006).
[Crossref]

Schultz, P. G.

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B. Ming, P. G. Schultz, and X.-D. Xiang, “Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope,” Science 276,2004–2006 (1997).
[Crossref]

Strinkovski, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nature biotechnol. 21,1378–1386 (2003).
[Crossref]

Taha, H.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nature biotechnol. 21,1378–1386 (2003).
[Crossref]

Wei, T.

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B. Ming, P. G. Schultz, and X.-D. Xiang, “Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope,” Science 276,2004–2006 (1997).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of optics 6th Edition. (Cambridge University Press, Cambridge, 1997).

Xiang, X.-D.

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B. Ming, P. G. Schultz, and X.-D. Xiang, “Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope,” Science 276,2004–2006 (1997).
[Crossref]

Appl. Phys. Lett. (1)

J.-B. masson, M.-P. Sauviat, and G. Gallot, “Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity,” Appl. Phys. Lett. 89,153904 (2006).
[Crossref]

Microwave Opt. Technol. Lett. (1)

H. Cory, A. C. Boccara, J. C. Rivoal, and A. Lahrech, “Electric field intensity variation in the vicinity of a perfectly conducting conical probe: Application to near-field microscopy,” Microwave Opt. Technol. Lett. 18,120–124 (1998).
[Crossref]

Nature biotechnol. (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nature biotechnol. 21,1378–1386 (2003).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90,013903 (2003).
[Crossref] [PubMed]

Proc. Nat. Acad. Sci. (1)

J.-B. Masson, M.-P. Sauviat, J.-L. Martin, and G. Gallot, “Ionic contrast terahertz near field imaging of axonal water fluxes,” Proc. Nat. Acad. Sci. USA 103,4808–4812 (2006).
[Crossref] [PubMed]

Science (1)

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B. Ming, P. G. Schultz, and X.-D. Xiang, “Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope,” Science 276,2004–2006 (1997).
[Crossref]

Other (4)

J. P. Fillard, Near Field Optics and Nanoscopy, (World Scientific, Singapore, 1996).

Comsol. Burlington, MA, USA, Version 3.3.

M. A. Bhatti, Fundamental Finite Element Analysis and Applications: With Mathematica and Matlab Computations, (J. Wiley & Sons, Hoboken, New Jersey, 2005).

M. Born and E. Wolf, Principles of optics 6th Edition. (Cambridge University Press, Cambridge, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Principle of apertureless near field microscopy. The probe has a cone angle α. The sample is a sphere of diameter a, at a distance L from the center of the probe apex of diameter D.
Fig. 2.
Fig. 2. Example, for a spherical sample of normalized size 0.22, of the evolution of Δ with normalized distance L/D. Three domains have been pointed out: the TNF, CNF and far field domains. The red line is the exponential fit in the CNF domain. The green line is far field reference.
Fig. 3.
Fig. 3. Evolution of the normalized distance Lc /D versus a/D. The solid line corresponds to the linear fit of the simulations, and the error bars refer to the dispersion of the results for D/λ from 1/3 to 1/9. The dotted line refers to near field with aperture.
Fig. 4.
Fig. 4. Exponential fit (solid line) of the overall evolution Δ with the normalized displacement distance (L - Lc )/D, for 3 tip sizes: λ/2, λ/5 and λ/10. The error bars show the dispersion of the results for each tip size and for 8 values of a/D from 0.05 to 0.75. The characteristic distance of the exponential is D/8.
Fig. 5.
Fig. 5. Evolution of the normalized distance Lc /D with the main angle of the probe. This example is taken with a/D=0.22. Black points are the results and the red line is the mean value found in the linear model of the evolution of Lc /D with a/D.

Metrics