H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007)

[Crossref]
[PubMed]

T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5 μm band with periodically poled lithium niobate waveguide”, Opt. Express 15, 4, 1679–1683 (2007).

[Crossref]
[PubMed]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006)

[Crossref]

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14, 13073–13082 (2006).

[Crossref]
[PubMed]

H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Opt. Express 14, 3453–3460 (2006).

[Crossref]
[PubMed]

H. Takesue and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005).

[Crossref]

D. Stucki, H. Zbinden, and N. Gisin, “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Optics, 52, 2637–2648 (2005).

[Crossref]

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30, 293 (2005).

[Crossref]
[PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).

[Crossref]
[PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).

[Crossref]
[PubMed]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisn, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Optics 51, 1637–1649 (2004).

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[Crossref]
[PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).

[Crossref]
[PubMed]

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).

[Crossref]

M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).

[Crossref]
[PubMed]

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 15, 1433–1445 (2004).

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Optics 45, 595–604 (1998).

[Crossref]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).

[Crossref]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[Crossref]
[PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).

[Crossref]
[PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).

[Crossref]
[PubMed]

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

[Crossref]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisn, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Optics 51, 1637–1649 (2004).

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30, 293 (2005).

[Crossref]
[PubMed]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “Wavelength Conversion Using Quasi-Phase Matched LiNbO3 Waveguides,” the Optical Electronics and Communications Conference, Yokohama, Japan, July 8-12 2002, paper PD2-8.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[Crossref]
[PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).

[Crossref]
[PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[Crossref]
[PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).

[Crossref]
[PubMed]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).

[Crossref]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).

[Crossref]
[PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[Crossref]
[PubMed]

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of Fiber-Generated Polarization Entangled Photon-Pairs over 100 km of Standard Fiber in OC-192 WDM Environment”, Optical Fiber Communications Conference (OFC2006), paper PDP35.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).

[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006)

[Crossref]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[Crossref]
[PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).

[Crossref]
[PubMed]

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14, 13073–13082 (2006).

[Crossref]
[PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).

[Crossref]
[PubMed]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).

[Crossref]

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

[Crossref]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).

[Crossref]
[PubMed]

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14, 13073–13082 (2006).

[Crossref]
[PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).

[Crossref]
[PubMed]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006)

[Crossref]

D. Stucki, H. Zbinden, and N. Gisin, “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Optics, 52, 2637–2648 (2005).

[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).

[Crossref]
[PubMed]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisn, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Optics 51, 1637–1649 (2004).

T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5 μm band with periodically poled lithium niobate waveguide”, Opt. Express 15, 4, 1679–1683 (2007).

[Crossref]
[PubMed]

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30, 293 (2005).

[Crossref]
[PubMed]

H. Takesue and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005).

[Crossref]

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).

[Crossref]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[Crossref]
[PubMed]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006)

[Crossref]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).

[Crossref]
[PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[Crossref]
[PubMed]

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of Fiber-Generated Polarization Entangled Photon-Pairs over 100 km of Standard Fiber in OC-192 WDM Environment”, Optical Fiber Communications Conference (OFC2006), paper PDP35.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 15, 1433–1445 (2004).

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14, 13073–13082 (2006).

[Crossref]
[PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).

[Crossref]
[PubMed]

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of Fiber-Generated Polarization Entangled Photon-Pairs over 100 km of Standard Fiber in OC-192 WDM Environment”, Optical Fiber Communications Conference (OFC2006), paper PDP35.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).

[Crossref]
[PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).

[Crossref]
[PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[Crossref]
[PubMed]

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of Fiber-Generated Polarization Entangled Photon-Pairs over 100 km of Standard Fiber in OC-192 WDM Environment”, Optical Fiber Communications Conference (OFC2006), paper PDP35.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).

[Crossref]
[PubMed]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisn, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Optics 51, 1637–1649 (2004).

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).

[Crossref]
[PubMed]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “Wavelength Conversion Using Quasi-Phase Matched LiNbO3 Waveguides,” the Optical Electronics and Communications Conference, Yokohama, Japan, July 8-12 2002, paper PD2-8.

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30, 293 (2005).

[Crossref]
[PubMed]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “Wavelength Conversion Using Quasi-Phase Matched LiNbO3 Waveguides,” the Optical Electronics and Communications Conference, Yokohama, Japan, July 8-12 2002, paper PD2-8.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[Crossref]
[PubMed]

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

[Crossref]

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Optics 45, 595–604 (1998).

[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006)

[Crossref]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisn, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Optics 51, 1637–1649 (2004).

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006)

[Crossref]

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

[Crossref]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisn, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Optics 51, 1637–1649 (2004).

D. Stucki, H. Zbinden, and N. Gisin, “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Optics, 52, 2637–2648 (2005).

[Crossref]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “Wavelength Conversion Using Quasi-Phase Matched LiNbO3 Waveguides,” the Optical Electronics and Communications Conference, Yokohama, Japan, July 8-12 2002, paper PD2-8.

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30, 293 (2005).

[Crossref]
[PubMed]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “Wavelength Conversion Using Quasi-Phase Matched LiNbO3 Waveguides,” the Optical Electronics and Communications Conference, Yokohama, Japan, July 8-12 2002, paper PD2-8.

T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5 μm band with periodically poled lithium niobate waveguide”, Opt. Express 15, 4, 1679–1683 (2007).

[Crossref]
[PubMed]

H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Opt. Express 14, 3453–3460 (2006).

[Crossref]
[PubMed]

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14, 13073–13082 (2006).

[Crossref]
[PubMed]

H. Takesue and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005).

[Crossref]

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30, 293 (2005).

[Crossref]
[PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).

[Crossref]
[PubMed]

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).

[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006)

[Crossref]

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Optics 45, 595–604 (1998).

[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006)

[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).

[Crossref]
[PubMed]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisn, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Optics 51, 1637–1649 (2004).

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 15, 1433–1445 (2004).

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[Crossref]
[PubMed]

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14, 13073–13082 (2006).

[Crossref]
[PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).

[Crossref]
[PubMed]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006)

[Crossref]

D. Stucki, H. Zbinden, and N. Gisin, “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Optics, 52, 2637–2648 (2005).

[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).

[Crossref]
[PubMed]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisn, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Optics 51, 1637–1649 (2004).

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006)

[Crossref]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).

[Crossref]

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 15, 1433–1445 (2004).

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Optics 45, 595–604 (1998).

[Crossref]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisn, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Optics 51, 1637–1649 (2004).

D. Stucki, H. Zbinden, and N. Gisin, “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Optics, 52, 2637–2648 (2005).

[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006)

[Crossref]

H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Opt. Express 14, 3453–3460 (2006).

[Crossref]
[PubMed]

T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5 μm band with periodically poled lithium niobate waveguide”, Opt. Express 15, 4, 1679–1683 (2007).

[Crossref]
[PubMed]

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14, 13073–13082 (2006).

[Crossref]
[PubMed]

H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007)

[Crossref]
[PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[Crossref]
[PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).

[Crossref]
[PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).

[Crossref]
[PubMed]

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30, 293 (2005).

[Crossref]
[PubMed]

M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).

[Crossref]
[PubMed]

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

[Crossref]

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).

[Crossref]

H. Takesue and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005).

[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).

[Crossref]
[PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).

[Crossref]
[PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).

[Crossref]
[PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

[Crossref]
[PubMed]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).

[Crossref]

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of Fiber-Generated Polarization Entangled Photon-Pairs over 100 km of Standard Fiber in OC-192 WDM Environment”, Optical Fiber Communications Conference (OFC2006), paper PDP35.

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “Wavelength Conversion Using Quasi-Phase Matched LiNbO3 Waveguides,” the Optical Electronics and Communications Conference, Yokohama, Japan, July 8-12 2002, paper PD2-8.