C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]
M. Gersborg-Hansen and A. Kristensen, “Tunability of optofluidic distributed feedback dye lasers,” Opt. Express 15, 137–142 (2007).
[Crossref]
[PubMed]
Z. Li and D. Psaltis, “Optofluidic Distributed Feedback Dye Lasers,” J. Sel. Top. Quantum Electron. 13, 185–193 (2007).
[Crossref]
A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
[Crossref]
[PubMed]
S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]
I. M. White, H. Oveys, and X. Fan, “Liquid Core Optical Ring Resonator Sensors,” Opt. Lett. 31, 1319–1321 (2006).
[Crossref]
[PubMed]
D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
H. Azzouz, L. Alkhafadiji, S. Balslev, Johansson, N. A. Mortensen, S. Nilsson, and A. Kristensen, “Levitated droplet dye laser,” Opt. Express 14, 4374–4379 (2006).
[Crossref]
[PubMed]
Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88, 091101 (2006).
[Crossref]
Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
[Crossref]
[PubMed]
Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14, 10494–10499 (2006).
[Crossref]
[PubMed]
S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, “Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator,” Nano Lett. 6, 1151–1154 (2006).
[Crossref]
[PubMed]
I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5, 581–589 (2006).
[Crossref]
[PubMed]
A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores,” ChemPhysChem 7, 47–57 (2006).
[Crossref]
C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[Crossref]
[PubMed]
S. Hohng and T. Ha, “Single-Molecule Quantum-Dot Fluorescence Resonance Energy Transfer,” ChemPhysChem 6, 956–960 (2005).
[Crossref]
[PubMed]
R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[Crossref]
[PubMed]
A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434, 876–879 (2005).
[Crossref]
[PubMed]
A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, “Non-linear transduction strategies for chemo/biosensing on small length scales,” J. Mater. Chem. 15, 2697–2706 (2005).
[Crossref]
J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” Appl. Phys. Lett. 86, 264101 (2005).
[Crossref]
B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]
C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[Crossref]
H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[Crossref]
[PubMed]
M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389, 466–469 (1997).
[Crossref]
M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulated emission and lasing in dye-doped organic thin films with Förster transfer,” Appl. Phys. Lett. 71, 2230–2232 (1997).
[Crossref]
M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, “Energy-transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).
[Crossref]
C. E. Moeller, C. M. Verber, and A. H. Adelman, “Laser pumping by excitation transfer in dye mixtures,” Appl. Phys. Lett. 18, 278–280 (1971).
[Crossref]
T. Förster, “Transfer mechanisms of electronic excitation,” Disc. Faraday Soc. 27, 7–17 (1959).
C. E. Moeller, C. M. Verber, and A. H. Adelman, “Laser pumping by excitation transfer in dye mixtures,” Appl. Phys. Lett. 18, 278–280 (1971).
[Crossref]
H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[Crossref]
[PubMed]
R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[Crossref]
[PubMed]
M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389, 466–469 (1997).
[Crossref]
A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, “Non-linear transduction strategies for chemo/biosensing on small length scales,” J. Mater. Chem. 15, 2697–2706 (2005).
[Crossref]
C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[Crossref]
J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” Appl. Phys. Lett. 86, 264101 (2005).
[Crossref]
S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, “Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator,” Nano Lett. 6, 1151–1154 (2006).
[Crossref]
[PubMed]
M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulated emission and lasing in dye-doped organic thin films with Förster transfer,” Appl. Phys. Lett. 71, 2230–2232 (1997).
[Crossref]
M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389, 466–469 (1997).
[Crossref]
I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5, 581–589 (2006).
[Crossref]
[PubMed]
A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434, 876–879 (2005).
[Crossref]
[PubMed]
A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, “Non-linear transduction strategies for chemo/biosensing on small length scales,” J. Mater. Chem. 15, 2697–2706 (2005).
[Crossref]
I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5, 581–589 (2006).
[Crossref]
[PubMed]
Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88, 091101 (2006).
[Crossref]
J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” Appl. Phys. Lett. 86, 264101 (2005).
[Crossref]
H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[Crossref]
[PubMed]
A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores,” ChemPhysChem 7, 47–57 (2006).
[Crossref]
I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5, 581–589 (2006).
[Crossref]
[PubMed]
I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5, 581–589 (2006).
[Crossref]
[PubMed]
I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5, 581–589 (2006).
[Crossref]
[PubMed]
M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389, 466–469 (1997).
[Crossref]
M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulated emission and lasing in dye-doped organic thin films with Förster transfer,” Appl. Phys. Lett. 71, 2230–2232 (1997).
[Crossref]
C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]
C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]
S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]
I. M. White, H. Oveys, and X. Fan, “Liquid Core Optical Ring Resonator Sensors,” Opt. Lett. 31, 1319–1321 (2006).
[Crossref]
[PubMed]
T. Förster, “Transfer mechanisms of electronic excitation,” Disc. Faraday Soc. 27, 7–17 (1959).
J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” Appl. Phys. Lett. 86, 264101 (2005).
[Crossref]
R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[Crossref]
[PubMed]
S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, “Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator,” Nano Lett. 6, 1151–1154 (2006).
[Crossref]
[PubMed]
S. Hohng and T. Ha, “Single-Molecule Quantum-Dot Fluorescence Resonance Energy Transfer,” ChemPhysChem 6, 956–960 (2005).
[Crossref]
[PubMed]
B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]
S. Hohng and T. Ha, “Single-Molecule Quantum-Dot Fluorescence Resonance Energy Transfer,” ChemPhysChem 6, 956–960 (2005).
[Crossref]
[PubMed]
M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, “Energy-transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).
[Crossref]
Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88, 091101 (2006).
[Crossref]
J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” Appl. Phys. Lett. 86, 264101 (2005).
[Crossref]
M. Gersborg-Hansen and A. Kristensen, “Tunability of optofluidic distributed feedback dye lasers,” Opt. Express 15, 137–142 (2007).
[Crossref]
[PubMed]
H. Azzouz, L. Alkhafadiji, S. Balslev, Johansson, N. A. Mortensen, S. Nilsson, and A. Kristensen, “Levitated droplet dye laser,” Opt. Express 14, 4374–4379 (2006).
[Crossref]
[PubMed]
B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]
S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, “Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator,” Nano Lett. 6, 1151–1154 (2006).
[Crossref]
[PubMed]
C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[Crossref]
[PubMed]
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (Kluwer Academic/Plenum Publishers, New York City, New York,1999).
C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[Crossref]
Z. Li and D. Psaltis, “Optofluidic Distributed Feedback Dye Lasers,” J. Sel. Top. Quantum Electron. 13, 185–193 (2007).
[Crossref]
Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
[Crossref]
[PubMed]
Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14, 10494–10499 (2006).
[Crossref]
[PubMed]
A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434, 876–879 (2005).
[Crossref]
[PubMed]
M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, “Energy-transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).
[Crossref]
I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5, 581–589 (2006).
[Crossref]
[PubMed]
A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores,” ChemPhysChem 7, 47–57 (2006).
[Crossref]
S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, “Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator,” Nano Lett. 6, 1151–1154 (2006).
[Crossref]
[PubMed]
A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores,” ChemPhysChem 7, 47–57 (2006).
[Crossref]
I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5, 581–589 (2006).
[Crossref]
[PubMed]
S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, “Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator,” Nano Lett. 6, 1151–1154 (2006).
[Crossref]
[PubMed]
B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]
C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[Crossref]
C. E. Moeller, C. M. Verber, and A. H. Adelman, “Laser pumping by excitation transfer in dye mixtures,” Appl. Phys. Lett. 18, 278–280 (1971).
[Crossref]
C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]
H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[Crossref]
[PubMed]
M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, “Energy-transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).
[Crossref]
A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, “Non-linear transduction strategies for chemo/biosensing on small length scales,” J. Mater. Chem. 15, 2697–2706 (2005).
[Crossref]
Z. Li and D. Psaltis, “Optofluidic Distributed Feedback Dye Lasers,” J. Sel. Top. Quantum Electron. 13, 185–193 (2007).
[Crossref]
D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
[Crossref]
[PubMed]
Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14, 10494–10499 (2006).
[Crossref]
[PubMed]
D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434, 876–879 (2005).
[Crossref]
[PubMed]
S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, “Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator,” Nano Lett. 6, 1151–1154 (2006).
[Crossref]
[PubMed]
M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, “Energy-transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).
[Crossref]
Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
[Crossref]
[PubMed]
Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14, 10494–10499 (2006).
[Crossref]
[PubMed]
S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]
R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[Crossref]
[PubMed]
M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulated emission and lasing in dye-doped organic thin films with Förster transfer,” Appl. Phys. Lett. 71, 2230–2232 (1997).
[Crossref]
M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389, 466–469 (1997).
[Crossref]
A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, “Non-linear transduction strategies for chemo/biosensing on small length scales,” J. Mater. Chem. 15, 2697–2706 (2005).
[Crossref]
A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434, 876–879 (2005).
[Crossref]
[PubMed]
I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5, 581–589 (2006).
[Crossref]
[PubMed]
J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” Appl. Phys. Lett. 86, 264101 (2005).
[Crossref]
I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5, 581–589 (2006).
[Crossref]
[PubMed]
C. E. Moeller, C. M. Verber, and A. H. Adelman, “Laser pumping by excitation transfer in dye mixtures,” Appl. Phys. Lett. 18, 278–280 (1971).
[Crossref]
C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[Crossref]
[PubMed]
R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[Crossref]
[PubMed]
C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[Crossref]
A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, “Non-linear transduction strategies for chemo/biosensing on small length scales,” J. Mater. Chem. 15, 2697–2706 (2005).
[Crossref]
D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[Crossref]
[PubMed]
Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88, 091101 (2006).
[Crossref]
C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[Crossref]
[PubMed]
S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]
Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
[Crossref]
[PubMed]
Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14, 10494–10499 (2006).
[Crossref]
[PubMed]
S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]
A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434, 876–879 (2005).
[Crossref]
[PubMed]
Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88, 091101 (2006).
[Crossref]
J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, “Microfluidic tunable dye laser with integrated mixer and ring resonator,” Appl. Phys. Lett. 86, 264101 (2005).
[Crossref]
S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]
C. E. Moeller, C. M. Verber, and A. H. Adelman, “Laser pumping by excitation transfer in dye mixtures,” Appl. Phys. Lett. 18, 278–280 (1971).
[Crossref]
M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulated emission and lasing in dye-doped organic thin films with Förster transfer,” Appl. Phys. Lett. 71, 2230–2232 (1997).
[Crossref]
A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores,” ChemPhysChem 7, 47–57 (2006).
[Crossref]
S. Hohng and T. Ha, “Single-Molecule Quantum-Dot Fluorescence Resonance Energy Transfer,” ChemPhysChem 6, 956–960 (2005).
[Crossref]
[PubMed]
T. Förster, “Transfer mechanisms of electronic excitation,” Disc. Faraday Soc. 27, 7–17 (1959).
M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, “Energy-transfer dye lasers,” J. Chem. Soc. Faraday Trans. 82, 2417–2422 (1986).
[Crossref]
A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, “Non-linear transduction strategies for chemo/biosensing on small length scales,” J. Mater. Chem. 15, 2697–2706 (2005).
[Crossref]
B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[Crossref]
R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[Crossref]
[PubMed]
C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[Crossref]
Z. Li and D. Psaltis, “Optofluidic Distributed Feedback Dye Lasers,” J. Sel. Top. Quantum Electron. 13, 185–193 (2007).
[Crossref]
S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, “Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator,” Nano Lett. 6, 1151–1154 (2006).
[Crossref]
[PubMed]
I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5, 581–589 (2006).
[Crossref]
[PubMed]
C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[Crossref]
[PubMed]
C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]
D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref]
[PubMed]
M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389, 466–469 (1997).
[Crossref]
A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434, 876–879 (2005).
[Crossref]
[PubMed]
Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14, 696–701 (2006).
[Crossref]
[PubMed]
Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14, 10494–10499 (2006).
[Crossref]
[PubMed]
M. Gersborg-Hansen and A. Kristensen, “Tunability of optofluidic distributed feedback dye lasers,” Opt. Express 15, 137–142 (2007).
[Crossref]
[PubMed]
H. Azzouz, L. Alkhafadiji, S. Balslev, Johansson, N. A. Mortensen, S. Nilsson, and A. Kristensen, “Levitated droplet dye laser,” Opt. Express 14, 4374–4379 (2006).
[Crossref]
[PubMed]
A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
[Crossref]
[PubMed]
J. C. Knight, H. S. T. Driver, R. J. Hutcheon, and G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett. 17, 1280–1282 (1992).
[Crossref]
[PubMed]
I. M. White, H. Oveys, and X. Fan, “Liquid Core Optical Ring Resonator Sensors,” Opt. Lett. 31, 1319–1321 (2006).
[Crossref]
[PubMed]
H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
[Crossref]
[PubMed]
S. Arnold and L. M. Folan, “Energy transfer and the photon lifetime within an aerosol particle,” Opt. Lett. 14, 387–389 (1989).
[Crossref]
[PubMed]
H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[Crossref]
[PubMed]
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (Kluwer Academic/Plenum Publishers, New York City, New York,1999).