## Abstract

An erratum is presented to correct the inadvertent typing mistakes in our paper [Opt. Express **14**, 13131 (2006)].

©2007 Optical Society of America

Full Article |

PDF Article

**OSA Recommended Articles**
### Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

### Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(16)
$$E\left(x,z,t\right)={b}_{3}{c}_{1}{E}_{0}\sqrt{\frac{\mathrm{ik}{a}_{1}}{2\pi z}\left(1+i\frac{2{\alpha}^{2}z}{{a}_{2}k{\sigma}^{2}}\right)}\sqrt{\frac{4\pi}{{\tau}^{\mathrm{\prime 2}}+i2{\phi}_{2}\left(z\right)}}\mathrm{exp}\left(-\frac{{x}^{2}}{{\sigma}^{\mathrm{\prime 2}}}\right)\mathrm{exp}\left\{-{\left(\frac{t-{t}_{o}}{\tau}\right)}^{2}\right\}$$
(16)
$$\mathrm{exp}\left(\frac{i{\phi}^{2}\left(z\right){\nu}^{2}\left(z\right){x}^{2}}{2}\right)\mathrm{exp}\left\{i\left(\frac{{\varphi}_{1}\left(t-{t}_{0}\right)+{\varphi}_{2}{\left(t-{t}_{o}\right)}^{2}}{2}\right)\right\}$$
(19)
$${\varphi}_{2}=\frac{{\phi}_{2}\left(z\right)}{\frac{{\tau}^{\mathrm{\prime 4}}}{4}+{\phi}_{2}^{\phantom{\rule{.2em}{0ex}}2}\left(z\right)};{\tau}^{\mathrm{\prime 2}}={\tau}_{0}^{\phantom{\rule{.2em}{0ex}}2}+\frac{4{a}_{1}{\alpha}^{2}{\xi}^{2}\left(z\right)}{{a}_{2}{\sigma}^{2}};{\tau}^{2}={\tau}^{\mathrm{\prime 2}}+\frac{4{\phi}_{2}^{2}\left(z\right)}{{\tau}^{\mathrm{\prime 2}}}$$