Abstract

We investigate the electro-optical response of an in-plane switching (IPS) liquid crystal (LC) device, which is fabricated using the two-easy-axes substrate. The two-easy-axes substrate is fabricated by slightly rubbing the substrate in two different directions. Experimental results indicate that the IPS LC device fabricated using the two-easy-axes substrate has a lower threshold voltage and a faster response time than the traditional IPS LC device, which is fabricated using the unidirectionally rubbed substrate. The weak anchoring condition and the anchoring strengths in two different rubbing directions on the substrate contribute to the fast electro-optical response of the IPS LC device.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of tunable electro-optical properties on U-shaped-alignment in-plane switching liquid crystal devices

Guan-Jhong Lin, Tien-Jung Chen, Yi-Wei Tsai, and Jin-Jei Wu
Opt. Mater. Express 7(7) 2461-2470 (2017)

In-plane switching dual-frequency liquid crystal cell

Chia Ting Hsieh, Chi Yen Huang, and Chi Huang Lin
Opt. Express 15(18) 11685-11690 (2007)

Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks

Guan-Jhong Lin, Tien-Jung Chen, Bo-Yu Chen, Jin-Jei Wu, and Ying-Jay Yang
Opt. Mater. Express 4(8) 1657-1667 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Lueder, Liquid Crystal Displays, Addressing Schemes and Electro-optical Effects (John Wiley and Sons, Singapore, 2001).
  2. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley and Sons, Singapore, 2001).
  3. T. Shimojyo, “Field-effect LCDs with interdigital electrodes,” Proc. Inf. Disp. 14, 110 (1973).
  4. R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45, 5466 (1974).
    [Crossref]
  5. M. Ohta, M. Oh-E, and K. Kondo, “Development of super-TFT-LCDs with in-plane switching mode,” Proc. Asia Disp. 95, 707 (1995).
  6. K. Oh-E and Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895 (1995).
    [Crossref]
  7. H. Wakemoto, S. Asada, K. Kato, Y. Yamamoto, T. Tsukane, K. Tsuda, and Y. Yakubo, “An advanced in-plane switching mode TFT-LCD,” SID Digest 28, 929 (1997).
  8. A. Lien and C. J. Chen, “2-D simulations of in-plane switching mode LCDs,” SID Digest 27, 175 (1996).
  9. M. Yoneya, K. Iwasaki, Y. Tomioka, and K. Kondo, “Cell gap margin enlargement of in-plane switching mode liquid crystal displays using weak-anchoring effects,” Appl. Phys. Lett. 74, 803 (1999).
    [Crossref]
  10. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1975).
  11. K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389 (1998).
    [Crossref]
  12. D. Klement and K. Tarumi, “Liquid crystal material development of IPS-TFT displays,” SID Digest 28, 393 (1998).
    [Crossref]
  13. M. Hasegawa, “Response time improvement of the in-plane-switching mode,” SID Digest 28, 699 (1997).
  14. M. J. Escuti, C. C. Bowley, and G. P. Crawford, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264 (1999).
    [Crossref]
  15. Y. J. Kim, Z. Zhuang, and J. S. Patel, “Effect of multidirection rubbing on the alignment of nematic liquid crystal,” Appl. Phys. Lett. 77, 513 (2000).
    [Crossref]
  16. D. H. Chung, Y. Takanishi, K. Ishikawa, C. J. Yu, S. D. Lee, and H. Takezoe, “Alignment control of a nematic liquid crystal on a doubly treated substrate,” Jpn. J. Appl. Phys.  42, 1686 (2003).
    [Crossref]
  17. R. Yamaguchi, Y. Goto, and S. Sato, “Liquid crystal alignment surface with two easy axes induced by unidirectional rubbing,” Appl. Phys. Lett. 82, 4450 (2003).
    [Crossref]
  18. R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu. “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84, 1321 (1998).
    [Crossref]
  19. M. P. Mahajan and C. Rosenblatt, “History-dependent orientational order of rubbed polyimide for liquid-crystal alignment,” Appl. Phys. Lett. 75, 3623 (1999).
    [Crossref]
  20. C. Y. Huang, C. H. Lin, J. R. Wang, C. W. Huang, M. S. Tsai, and A. Y. G. Fuh, “Multidirectional rubbed liquid-crystal cells,” J. Appl. Phys. 92, 7231 (2002).
    [Crossref]
  21. C. Y. Huang, Y. S. Huang, and J. R. Tian, “Alignment of liquid crystals on two-easy-axis substrate,” Jpn. J. Appl. Phys. 45, 168 (2006).
    [Crossref]
  22. C. Y. Huang, Y. S. Huang, J. R. Tian, and S. J. Yeh, “Influence of the two-directionally-rubbed substrate on the alignment of liquid crystals,” Opt. Comm. 265, 241 (2006).
    [Crossref]

2006 (2)

C. Y. Huang, Y. S. Huang, and J. R. Tian, “Alignment of liquid crystals on two-easy-axis substrate,” Jpn. J. Appl. Phys. 45, 168 (2006).
[Crossref]

C. Y. Huang, Y. S. Huang, J. R. Tian, and S. J. Yeh, “Influence of the two-directionally-rubbed substrate on the alignment of liquid crystals,” Opt. Comm. 265, 241 (2006).
[Crossref]

2003 (2)

D. H. Chung, Y. Takanishi, K. Ishikawa, C. J. Yu, S. D. Lee, and H. Takezoe, “Alignment control of a nematic liquid crystal on a doubly treated substrate,” Jpn. J. Appl. Phys.  42, 1686 (2003).
[Crossref]

R. Yamaguchi, Y. Goto, and S. Sato, “Liquid crystal alignment surface with two easy axes induced by unidirectional rubbing,” Appl. Phys. Lett. 82, 4450 (2003).
[Crossref]

2002 (1)

C. Y. Huang, C. H. Lin, J. R. Wang, C. W. Huang, M. S. Tsai, and A. Y. G. Fuh, “Multidirectional rubbed liquid-crystal cells,” J. Appl. Phys. 92, 7231 (2002).
[Crossref]

2000 (1)

Y. J. Kim, Z. Zhuang, and J. S. Patel, “Effect of multidirection rubbing on the alignment of nematic liquid crystal,” Appl. Phys. Lett. 77, 513 (2000).
[Crossref]

1999 (3)

M. J. Escuti, C. C. Bowley, and G. P. Crawford, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264 (1999).
[Crossref]

M. P. Mahajan and C. Rosenblatt, “History-dependent orientational order of rubbed polyimide for liquid-crystal alignment,” Appl. Phys. Lett. 75, 3623 (1999).
[Crossref]

M. Yoneya, K. Iwasaki, Y. Tomioka, and K. Kondo, “Cell gap margin enlargement of in-plane switching mode liquid crystal displays using weak-anchoring effects,” Appl. Phys. Lett. 74, 803 (1999).
[Crossref]

1998 (3)

K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389 (1998).
[Crossref]

D. Klement and K. Tarumi, “Liquid crystal material development of IPS-TFT displays,” SID Digest 28, 393 (1998).
[Crossref]

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu. “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84, 1321 (1998).
[Crossref]

1997 (2)

H. Wakemoto, S. Asada, K. Kato, Y. Yamamoto, T. Tsukane, K. Tsuda, and Y. Yakubo, “An advanced in-plane switching mode TFT-LCD,” SID Digest 28, 929 (1997).

M. Hasegawa, “Response time improvement of the in-plane-switching mode,” SID Digest 28, 699 (1997).

1996 (1)

A. Lien and C. J. Chen, “2-D simulations of in-plane switching mode LCDs,” SID Digest 27, 175 (1996).

1995 (2)

M. Ohta, M. Oh-E, and K. Kondo, “Development of super-TFT-LCDs with in-plane switching mode,” Proc. Asia Disp. 95, 707 (1995).

K. Oh-E and Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895 (1995).
[Crossref]

1974 (1)

R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45, 5466 (1974).
[Crossref]

1973 (1)

T. Shimojyo, “Field-effect LCDs with interdigital electrodes,” Proc. Inf. Disp. 14, 110 (1973).

Alexe-Ionescu, A. L.

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu. “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84, 1321 (1998).
[Crossref]

Asada, S.

H. Wakemoto, S. Asada, K. Kato, Y. Yamamoto, T. Tsukane, K. Tsuda, and Y. Yakubo, “An advanced in-plane switching mode TFT-LCD,” SID Digest 28, 929 (1997).

Barberi, R.

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu. “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84, 1321 (1998).
[Crossref]

Bonvent, J. J.

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu. “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84, 1321 (1998).
[Crossref]

Bowley, C. C.

M. J. Escuti, C. C. Bowley, and G. P. Crawford, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264 (1999).
[Crossref]

Chen, C. J.

A. Lien and C. J. Chen, “2-D simulations of in-plane switching mode LCDs,” SID Digest 27, 175 (1996).

Chung, D. H.

D. H. Chung, Y. Takanishi, K. Ishikawa, C. J. Yu, S. D. Lee, and H. Takezoe, “Alignment control of a nematic liquid crystal on a doubly treated substrate,” Jpn. J. Appl. Phys.  42, 1686 (2003).
[Crossref]

Crawford, G. P.

M. J. Escuti, C. C. Bowley, and G. P. Crawford, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264 (1999).
[Crossref]

de Gennes, P. G.

P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1975).

Escuti, M. J.

M. J. Escuti, C. C. Bowley, and G. P. Crawford, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264 (1999).
[Crossref]

Fuh, A. Y. G.

C. Y. Huang, C. H. Lin, J. R. Wang, C. W. Huang, M. S. Tsai, and A. Y. G. Fuh, “Multidirectional rubbed liquid-crystal cells,” J. Appl. Phys. 92, 7231 (2002).
[Crossref]

Giocondo, M.

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu. “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84, 1321 (1998).
[Crossref]

Goto, Y.

R. Yamaguchi, Y. Goto, and S. Sato, “Liquid crystal alignment surface with two easy axes induced by unidirectional rubbing,” Appl. Phys. Lett. 82, 4450 (2003).
[Crossref]

Hasegawa, M.

M. Hasegawa, “Response time improvement of the in-plane-switching mode,” SID Digest 28, 699 (1997).

Huang, C. W.

C. Y. Huang, C. H. Lin, J. R. Wang, C. W. Huang, M. S. Tsai, and A. Y. G. Fuh, “Multidirectional rubbed liquid-crystal cells,” J. Appl. Phys. 92, 7231 (2002).
[Crossref]

Huang, C. Y.

C. Y. Huang, Y. S. Huang, and J. R. Tian, “Alignment of liquid crystals on two-easy-axis substrate,” Jpn. J. Appl. Phys. 45, 168 (2006).
[Crossref]

C. Y. Huang, Y. S. Huang, J. R. Tian, and S. J. Yeh, “Influence of the two-directionally-rubbed substrate on the alignment of liquid crystals,” Opt. Comm. 265, 241 (2006).
[Crossref]

C. Y. Huang, C. H. Lin, J. R. Wang, C. W. Huang, M. S. Tsai, and A. Y. G. Fuh, “Multidirectional rubbed liquid-crystal cells,” J. Appl. Phys. 92, 7231 (2002).
[Crossref]

Huang, Y. S.

C. Y. Huang, Y. S. Huang, J. R. Tian, and S. J. Yeh, “Influence of the two-directionally-rubbed substrate on the alignment of liquid crystals,” Opt. Comm. 265, 241 (2006).
[Crossref]

C. Y. Huang, Y. S. Huang, and J. R. Tian, “Alignment of liquid crystals on two-easy-axis substrate,” Jpn. J. Appl. Phys. 45, 168 (2006).
[Crossref]

Iovane, M.

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu. “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84, 1321 (1998).
[Crossref]

Ishikawa, K.

D. H. Chung, Y. Takanishi, K. Ishikawa, C. J. Yu, S. D. Lee, and H. Takezoe, “Alignment control of a nematic liquid crystal on a doubly treated substrate,” Jpn. J. Appl. Phys.  42, 1686 (2003).
[Crossref]

Iwasaki, K.

M. Yoneya, K. Iwasaki, Y. Tomioka, and K. Kondo, “Cell gap margin enlargement of in-plane switching mode liquid crystal displays using weak-anchoring effects,” Appl. Phys. Lett. 74, 803 (1999).
[Crossref]

Kato, K.

H. Wakemoto, S. Asada, K. Kato, Y. Yamamoto, T. Tsukane, K. Tsuda, and Y. Yakubo, “An advanced in-plane switching mode TFT-LCD,” SID Digest 28, 929 (1997).

Kawakami, H.

K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389 (1998).
[Crossref]

Kim, Y. J.

Y. J. Kim, Z. Zhuang, and J. S. Patel, “Effect of multidirection rubbing on the alignment of nematic liquid crystal,” Appl. Phys. Lett. 77, 513 (2000).
[Crossref]

Klement, D.

D. Klement and K. Tarumi, “Liquid crystal material development of IPS-TFT displays,” SID Digest 28, 393 (1998).
[Crossref]

Kondo,

K. Oh-E and Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895 (1995).
[Crossref]

Kondo, K.

M. Yoneya, K. Iwasaki, Y. Tomioka, and K. Kondo, “Cell gap margin enlargement of in-plane switching mode liquid crystal displays using weak-anchoring effects,” Appl. Phys. Lett. 74, 803 (1999).
[Crossref]

K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389 (1998).
[Crossref]

M. Ohta, M. Oh-E, and K. Kondo, “Development of super-TFT-LCDs with in-plane switching mode,” Proc. Asia Disp. 95, 707 (1995).

Konishi, N.

K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389 (1998).
[Crossref]

Lee, S. D.

D. H. Chung, Y. Takanishi, K. Ishikawa, C. J. Yu, S. D. Lee, and H. Takezoe, “Alignment control of a nematic liquid crystal on a doubly treated substrate,” Jpn. J. Appl. Phys.  42, 1686 (2003).
[Crossref]

Lien, A.

A. Lien and C. J. Chen, “2-D simulations of in-plane switching mode LCDs,” SID Digest 27, 175 (1996).

Lin, C. H.

C. Y. Huang, C. H. Lin, J. R. Wang, C. W. Huang, M. S. Tsai, and A. Y. G. Fuh, “Multidirectional rubbed liquid-crystal cells,” J. Appl. Phys. 92, 7231 (2002).
[Crossref]

Lueder, E.

E. Lueder, Liquid Crystal Displays, Addressing Schemes and Electro-optical Effects (John Wiley and Sons, Singapore, 2001).

Mahajan, M. P.

M. P. Mahajan and C. Rosenblatt, “History-dependent orientational order of rubbed polyimide for liquid-crystal alignment,” Appl. Phys. Lett. 75, 3623 (1999).
[Crossref]

Matsuyama, S.

K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389 (1998).
[Crossref]

Oh-E, K.

K. Oh-E and Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895 (1995).
[Crossref]

Oh-E, M.

M. Ohta, M. Oh-E, and K. Kondo, “Development of super-TFT-LCDs with in-plane switching mode,” Proc. Asia Disp. 95, 707 (1995).

Ohta, M.

M. Ohta, M. Oh-E, and K. Kondo, “Development of super-TFT-LCDs with in-plane switching mode,” Proc. Asia Disp. 95, 707 (1995).

Patel, J. S.

Y. J. Kim, Z. Zhuang, and J. S. Patel, “Effect of multidirection rubbing on the alignment of nematic liquid crystal,” Appl. Phys. Lett. 77, 513 (2000).
[Crossref]

Rosenblatt, C.

M. P. Mahajan and C. Rosenblatt, “History-dependent orientational order of rubbed polyimide for liquid-crystal alignment,” Appl. Phys. Lett. 75, 3623 (1999).
[Crossref]

Sato, S.

R. Yamaguchi, Y. Goto, and S. Sato, “Liquid crystal alignment surface with two easy axes induced by unidirectional rubbing,” Appl. Phys. Lett. 82, 4450 (2003).
[Crossref]

Shimojyo, T.

T. Shimojyo, “Field-effect LCDs with interdigital electrodes,” Proc. Inf. Disp. 14, 110 (1973).

Soref, R. A.

R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45, 5466 (1974).
[Crossref]

Takanishi, Y.

D. H. Chung, Y. Takanishi, K. Ishikawa, C. J. Yu, S. D. Lee, and H. Takezoe, “Alignment control of a nematic liquid crystal on a doubly treated substrate,” Jpn. J. Appl. Phys.  42, 1686 (2003).
[Crossref]

Takezoe, H.

D. H. Chung, Y. Takanishi, K. Ishikawa, C. J. Yu, S. D. Lee, and H. Takezoe, “Alignment control of a nematic liquid crystal on a doubly treated substrate,” Jpn. J. Appl. Phys.  42, 1686 (2003).
[Crossref]

Tarumi, K.

D. Klement and K. Tarumi, “Liquid crystal material development of IPS-TFT displays,” SID Digest 28, 393 (1998).
[Crossref]

Tian, J. R.

C. Y. Huang, Y. S. Huang, and J. R. Tian, “Alignment of liquid crystals on two-easy-axis substrate,” Jpn. J. Appl. Phys. 45, 168 (2006).
[Crossref]

C. Y. Huang, Y. S. Huang, J. R. Tian, and S. J. Yeh, “Influence of the two-directionally-rubbed substrate on the alignment of liquid crystals,” Opt. Comm. 265, 241 (2006).
[Crossref]

Tomioka, Y.

M. Yoneya, K. Iwasaki, Y. Tomioka, and K. Kondo, “Cell gap margin enlargement of in-plane switching mode liquid crystal displays using weak-anchoring effects,” Appl. Phys. Lett. 74, 803 (1999).
[Crossref]

Tsai, M. S.

C. Y. Huang, C. H. Lin, J. R. Wang, C. W. Huang, M. S. Tsai, and A. Y. G. Fuh, “Multidirectional rubbed liquid-crystal cells,” J. Appl. Phys. 92, 7231 (2002).
[Crossref]

Tsuda, K.

H. Wakemoto, S. Asada, K. Kato, Y. Yamamoto, T. Tsukane, K. Tsuda, and Y. Yakubo, “An advanced in-plane switching mode TFT-LCD,” SID Digest 28, 929 (1997).

Tsukane, T.

H. Wakemoto, S. Asada, K. Kato, Y. Yamamoto, T. Tsukane, K. Tsuda, and Y. Yakubo, “An advanced in-plane switching mode TFT-LCD,” SID Digest 28, 929 (1997).

Wakemoto, H.

H. Wakemoto, S. Asada, K. Kato, Y. Yamamoto, T. Tsukane, K. Tsuda, and Y. Yakubo, “An advanced in-plane switching mode TFT-LCD,” SID Digest 28, 929 (1997).

Wang, J. R.

C. Y. Huang, C. H. Lin, J. R. Wang, C. W. Huang, M. S. Tsai, and A. Y. G. Fuh, “Multidirectional rubbed liquid-crystal cells,” J. Appl. Phys. 92, 7231 (2002).
[Crossref]

Wu, S. T.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley and Sons, Singapore, 2001).

Yakubo, Y.

H. Wakemoto, S. Asada, K. Kato, Y. Yamamoto, T. Tsukane, K. Tsuda, and Y. Yakubo, “An advanced in-plane switching mode TFT-LCD,” SID Digest 28, 929 (1997).

Yamaguchi, R.

R. Yamaguchi, Y. Goto, and S. Sato, “Liquid crystal alignment surface with two easy axes induced by unidirectional rubbing,” Appl. Phys. Lett. 82, 4450 (2003).
[Crossref]

Yamamoto, Y.

H. Wakemoto, S. Asada, K. Kato, Y. Yamamoto, T. Tsukane, K. Tsuda, and Y. Yakubo, “An advanced in-plane switching mode TFT-LCD,” SID Digest 28, 929 (1997).

Yang, D. K.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley and Sons, Singapore, 2001).

Yeh, S. J.

C. Y. Huang, Y. S. Huang, J. R. Tian, and S. J. Yeh, “Influence of the two-directionally-rubbed substrate on the alignment of liquid crystals,” Opt. Comm. 265, 241 (2006).
[Crossref]

Yoneya, M.

M. Yoneya, K. Iwasaki, Y. Tomioka, and K. Kondo, “Cell gap margin enlargement of in-plane switching mode liquid crystal displays using weak-anchoring effects,” Appl. Phys. Lett. 74, 803 (1999).
[Crossref]

Yu, C. J.

D. H. Chung, Y. Takanishi, K. Ishikawa, C. J. Yu, S. D. Lee, and H. Takezoe, “Alignment control of a nematic liquid crystal on a doubly treated substrate,” Jpn. J. Appl. Phys.  42, 1686 (2003).
[Crossref]

Zhuang, Z.

Y. J. Kim, Z. Zhuang, and J. S. Patel, “Effect of multidirection rubbing on the alignment of nematic liquid crystal,” Appl. Phys. Lett. 77, 513 (2000).
[Crossref]

Appl. Phys. Lett. (6)

K. Oh-E and Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895 (1995).
[Crossref]

M. Yoneya, K. Iwasaki, Y. Tomioka, and K. Kondo, “Cell gap margin enlargement of in-plane switching mode liquid crystal displays using weak-anchoring effects,” Appl. Phys. Lett. 74, 803 (1999).
[Crossref]

M. J. Escuti, C. C. Bowley, and G. P. Crawford, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264 (1999).
[Crossref]

Y. J. Kim, Z. Zhuang, and J. S. Patel, “Effect of multidirection rubbing on the alignment of nematic liquid crystal,” Appl. Phys. Lett. 77, 513 (2000).
[Crossref]

M. P. Mahajan and C. Rosenblatt, “History-dependent orientational order of rubbed polyimide for liquid-crystal alignment,” Appl. Phys. Lett. 75, 3623 (1999).
[Crossref]

R. Yamaguchi, Y. Goto, and S. Sato, “Liquid crystal alignment surface with two easy axes induced by unidirectional rubbing,” Appl. Phys. Lett. 82, 4450 (2003).
[Crossref]

J. Appl. Phys. (3)

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu. “Bistable nematic azimuthal alignment induced by anchoring competition,” J. Appl. Phys. 84, 1321 (1998).
[Crossref]

C. Y. Huang, C. H. Lin, J. R. Wang, C. W. Huang, M. S. Tsai, and A. Y. G. Fuh, “Multidirectional rubbed liquid-crystal cells,” J. Appl. Phys. 92, 7231 (2002).
[Crossref]

R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45, 5466 (1974).
[Crossref]

Jpn. J. Appl. (1)

D. H. Chung, Y. Takanishi, K. Ishikawa, C. J. Yu, S. D. Lee, and H. Takezoe, “Alignment control of a nematic liquid crystal on a doubly treated substrate,” Jpn. J. Appl. Phys.  42, 1686 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

C. Y. Huang, Y. S. Huang, and J. R. Tian, “Alignment of liquid crystals on two-easy-axis substrate,” Jpn. J. Appl. Phys. 45, 168 (2006).
[Crossref]

Opt. Comm. (1)

C. Y. Huang, Y. S. Huang, J. R. Tian, and S. J. Yeh, “Influence of the two-directionally-rubbed substrate on the alignment of liquid crystals,” Opt. Comm. 265, 241 (2006).
[Crossref]

Proc. Asia Disp. (1)

M. Ohta, M. Oh-E, and K. Kondo, “Development of super-TFT-LCDs with in-plane switching mode,” Proc. Asia Disp. 95, 707 (1995).

Proc. Inf. Disp. (1)

T. Shimojyo, “Field-effect LCDs with interdigital electrodes,” Proc. Inf. Disp. 14, 110 (1973).

SID Digest (5)

H. Wakemoto, S. Asada, K. Kato, Y. Yamamoto, T. Tsukane, K. Tsuda, and Y. Yakubo, “An advanced in-plane switching mode TFT-LCD,” SID Digest 28, 929 (1997).

A. Lien and C. J. Chen, “2-D simulations of in-plane switching mode LCDs,” SID Digest 27, 175 (1996).

K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389 (1998).
[Crossref]

D. Klement and K. Tarumi, “Liquid crystal material development of IPS-TFT displays,” SID Digest 28, 393 (1998).
[Crossref]

M. Hasegawa, “Response time improvement of the in-plane-switching mode,” SID Digest 28, 699 (1997).

Other (3)

P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1975).

E. Lueder, Liquid Crystal Displays, Addressing Schemes and Electro-optical Effects (John Wiley and Sons, Singapore, 2001).

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley and Sons, Singapore, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Geometry of the [m, n]-rubbed IPS LC device. In the figure, 1st indicates the first rubbing direction and 2nd indicates the second rubbing direction.
Fig. 2.
Fig. 2. Measured deviation angle of the two-easy-axes IPS LC cell as a function of m. In this experiment, n is set to be 1.
Fig. 3.
Fig. 3. Measured transmission versus applied voltage (T-V) curves of the [1, 1] and [0, 1]- rubbed IPS cells. The deviation angle is ~8°.
Fig. 4.
Fig. 4. Measured electro-optical responses of the [1, 1] and [0, 1]-rubbed IPS cells. The deviation angle is ~8°.
Fig. 5.
Fig. 5. Measured voltage dependent rise times of the [1, 3] and [0, 1]-rubbed IPS cells. The deviation angle is ~5°.
Fig. 6.
Fig. 6. Measured electro-optical responses of the [3, 1] and [0, 1]-rubbed IPS cells. Inset shows the total response times of the [3, 1] and [0, 1]-rubbed IPS cells. The deviation angle is ~20°.
Fig. 7.
Fig. 7. Measured T-V curves of the [3, 1] and [0, 1]-rubbed cells.
Fig. 8.
Fig. 8. Optical microscope images of the [0, 1], [1, 1], [1, 3] and [3, 1]-rubbed cells. In the figure, 1st indicates the first rubbing direction and 2nd indicates the second rubbing direction.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V th = π · l d + 2 b k 22 ε 0 Δ ε ,
b = k 22 A .
τ on = γ 1 ε 0 Δ ε E 2 π 2 ( d + 2 b ) 2 k 22 ,
τ off = γ 1 ( d + 2 b ) 2 π 2 k 22 .

Metrics