Abstract

Dielectric spheres synthesized for the fabrication of self-organized photonic crystals such as opals offer large opportunities for the design of novel nanophotonic devices. In this paper, we show that a hexagonal superlattice monolayer of dielectric spheres exhibits an even photonic band gap below the light cone for refractive indices higher than 1.93. The use of spheres with refractive index 2.9 and diameter 0.33 μm tunes the photonic band gap to the telecommunications range (λ=1.55 μm). As a practical example for the use of such a photonic band gap, we demonstrate the possibility of waveguiding light linearly through the monolayer.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of optical waveguide polarizer using photonic band gap

Ravindra K. Sinha and Yogita Kalra
Opt. Express 14(22) 10790-10794 (2006)

Waveguides in inverted opal photonic crystals

Virginie Lousse and Shanhui Fan
Opt. Express 14(2) 866-878 (2006)

Broadband single-mode waveguiding in two- and three-dimensional hybrid photonic crystals based on silicon inverse opals

Gaoxin Qiu, Kevin Vynck, David Cassagne, and Emmanuel Centeno
Opt. Express 15(6) 3502-3506 (2007)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong Localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    [Crossref] [PubMed]
  3. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton University Press, Princeton, New Jersey,1995).
  4. Photonic Band Gap Materials, edited by CM. Soukoulis (Kluwer Academic Publishers, Dordrecht,1996).
  5. V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
    [Crossref]
  6. J. Wijnhoven and W.L. Vos, “Preparation of Photonic Crystals made of air spheres in Titania,” Science 281, 802 (1998).
    [Crossref]
  7. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
    [Crossref] [PubMed]
  8. A.Y. Vlasov, X.-Z. Bo, J.C. Sturm, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289 (2001).
    [Crossref] [PubMed]
  9. C. López, “Materials Aspects of Photonic Crystals,” Adv. Mater 15, 1679 (2003).
    [Crossref]
  10. H.T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87, 7152 (2000).
    [Crossref]
  11. A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. Garcia-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 011422 (1999).
    [Crossref]
  12. X. Jiang, T. Herricks, and Y. Xia, “Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization,” Adv. Mater. 15, 1205 (2003).
    [Crossref]
  13. E. Mine, M. Hirose, D. Nagao, Y. Kobayashi, and M. Konno, “Synthesis of submicrometer-sized titania spherical particles with a sol-gel method and their application to colloidal photonic crystals,” J. Colloid Interface Sci. 291, 162 (2005).
    [Crossref] [PubMed]
  14. S. Yano, Y. Segawa, J.S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice ad three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
    [Crossref]
  15. P. Massé, S. Reculusa, K. Clays, and S. Ravaine, “Tailoring planar defects in three-dimensional colloidal crystals,” Chem. Phys. Lett. 422, 251 (2006).
    [Crossref]
  16. F. Jonsson, C.M.Sotomayor Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artificially inscribed defects in opal photonic crystals,” Microelectron. Eng. 48, 78 (2005).
  17. W. Cai and R. Piestun, “Patterning of silica microsphere monolayers with focused femtosecond laser pulses,” Appl. Phys. Lett. 88, 111112 (2006).
    [Crossref]
  18. S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173 (2001).
    [Crossref] [PubMed]
  19. D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic band gaps,” Phys. Rev. B 53, 7134 (1996).
    [Crossref]
  20. S.G. Johnson, P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
    [Crossref]

2006 (2)

P. Massé, S. Reculusa, K. Clays, and S. Ravaine, “Tailoring planar defects in three-dimensional colloidal crystals,” Chem. Phys. Lett. 422, 251 (2006).
[Crossref]

W. Cai and R. Piestun, “Patterning of silica microsphere monolayers with focused femtosecond laser pulses,” Appl. Phys. Lett. 88, 111112 (2006).
[Crossref]

2005 (2)

F. Jonsson, C.M.Sotomayor Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artificially inscribed defects in opal photonic crystals,” Microelectron. Eng. 48, 78 (2005).

E. Mine, M. Hirose, D. Nagao, Y. Kobayashi, and M. Konno, “Synthesis of submicrometer-sized titania spherical particles with a sol-gel method and their application to colloidal photonic crystals,” J. Colloid Interface Sci. 291, 162 (2005).
[Crossref] [PubMed]

2003 (2)

X. Jiang, T. Herricks, and Y. Xia, “Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization,” Adv. Mater. 15, 1205 (2003).
[Crossref]

C. López, “Materials Aspects of Photonic Crystals,” Adv. Mater 15, 1679 (2003).
[Crossref]

2002 (1)

S. Yano, Y. Segawa, J.S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice ad three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

2001 (2)

S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173 (2001).
[Crossref] [PubMed]

A.Y. Vlasov, X.-Z. Bo, J.C. Sturm, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289 (2001).
[Crossref] [PubMed]

2000 (3)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

H.T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87, 7152 (2000).
[Crossref]

S.G. Johnson, P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[Crossref]

1999 (1)

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. Garcia-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 011422 (1999).
[Crossref]

1998 (1)

J. Wijnhoven and W.L. Vos, “Preparation of Photonic Crystals made of air spheres in Titania,” Science 281, 802 (1998).
[Crossref]

1997 (1)

V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
[Crossref]

1996 (1)

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic band gaps,” Phys. Rev. B 53, 7134 (1996).
[Crossref]

1987 (2)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

S. John, “Strong Localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

Bae, J.S.

S. Yano, Y. Segawa, J.S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice ad three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

Bertho, D.

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic band gaps,” Phys. Rev. B 53, 7134 (1996).
[Crossref]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

Bo, X.-Z.

A.Y. Vlasov, X.-Z. Bo, J.C. Sturm, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289 (2001).
[Crossref] [PubMed]

Bogomolov, V.N.

V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
[Crossref]

Cai, W.

W. Cai and R. Piestun, “Patterning of silica microsphere monolayers with focused femtosecond laser pulses,” Appl. Phys. Lett. 88, 111112 (2006).
[Crossref]

Cassagne, D.

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. Garcia-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 011422 (1999).
[Crossref]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic band gaps,” Phys. Rev. B 53, 7134 (1996).
[Crossref]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

Clays, K.

P. Massé, S. Reculusa, K. Clays, and S. Ravaine, “Tailoring planar defects in three-dimensional colloidal crystals,” Chem. Phys. Lett. 422, 251 (2006).
[Crossref]

Driel, H.M.van

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

Fan, S.

S.G. Johnson, P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[Crossref]

Gaponenko, N.V.

V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
[Crossref]

Garcia-Vidal, F.J.

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. Garcia-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 011422 (1999).
[Crossref]

Germanenko, I.N.

V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
[Crossref]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

Herricks, T.

X. Jiang, T. Herricks, and Y. Xia, “Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization,” Adv. Mater. 15, 1205 (2003).
[Crossref]

Hirose, M.

E. Mine, M. Hirose, D. Nagao, Y. Kobayashi, and M. Konno, “Synthesis of submicrometer-sized titania spherical particles with a sol-gel method and their application to colloidal photonic crystals,” J. Colloid Interface Sci. 291, 162 (2005).
[Crossref] [PubMed]

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

Jiang, X.

X. Jiang, T. Herricks, and Y. Xia, “Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization,” Adv. Mater. 15, 1205 (2003).
[Crossref]

Joannopoulos, J.D.

S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173 (2001).
[Crossref] [PubMed]

S.G. Johnson, P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[Crossref]

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton University Press, Princeton, New Jersey,1995).

John, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

S. John, “Strong Localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

Johnson, S.G.

S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173 (2001).
[Crossref] [PubMed]

S.G. Johnson, P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[Crossref]

Jonsson, F.

F. Jonsson, C.M.Sotomayor Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artificially inscribed defects in opal photonic crystals,” Microelectron. Eng. 48, 78 (2005).

Jouanin, C.

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. Garcia-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 011422 (1999).
[Crossref]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic band gaps,” Phys. Rev. B 53, 7134 (1996).
[Crossref]

Kapitonov, A.M.

V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
[Crossref]

Kobayashi, Y.

E. Mine, M. Hirose, D. Nagao, Y. Kobayashi, and M. Konno, “Synthesis of submicrometer-sized titania spherical particles with a sol-gel method and their application to colloidal photonic crystals,” J. Colloid Interface Sci. 291, 162 (2005).
[Crossref] [PubMed]

Konno, M.

E. Mine, M. Hirose, D. Nagao, Y. Kobayashi, and M. Konno, “Synthesis of submicrometer-sized titania spherical particles with a sol-gel method and their application to colloidal photonic crystals,” J. Colloid Interface Sci. 291, 162 (2005).
[Crossref] [PubMed]

Leonard, S.W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

López, C.

C. López, “Materials Aspects of Photonic Crystals,” Adv. Mater 15, 1679 (2003).
[Crossref]

López-Tejeira, F.

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. Garcia-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 011422 (1999).
[Crossref]

Massé, P.

P. Massé, S. Reculusa, K. Clays, and S. Ravaine, “Tailoring planar defects in three-dimensional colloidal crystals,” Chem. Phys. Lett. 422, 251 (2006).
[Crossref]

Meade, R.D.

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton University Press, Princeton, New Jersey,1995).

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

Mine, E.

E. Mine, M. Hirose, D. Nagao, Y. Kobayashi, and M. Konno, “Synthesis of submicrometer-sized titania spherical particles with a sol-gel method and their application to colloidal photonic crystals,” J. Colloid Interface Sci. 291, 162 (2005).
[Crossref] [PubMed]

Miyazaki, H.

H.T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87, 7152 (2000).
[Crossref]

Miyazaki, H.T.

H.T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87, 7152 (2000).
[Crossref]

Mizuno, K.

S. Yano, Y. Segawa, J.S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice ad three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

Mondla, J.P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

Nagao, D.

E. Mine, M. Hirose, D. Nagao, Y. Kobayashi, and M. Konno, “Synthesis of submicrometer-sized titania spherical particles with a sol-gel method and their application to colloidal photonic crystals,” J. Colloid Interface Sci. 291, 162 (2005).
[Crossref] [PubMed]

Norris, D.J.

A.Y. Vlasov, X.-Z. Bo, J.C. Sturm, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289 (2001).
[Crossref] [PubMed]

Ohtaka, K.

S. Yano, Y. Segawa, J.S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice ad three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

H.T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87, 7152 (2000).
[Crossref]

Ozin, G.A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

Petrov, E.P.

V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
[Crossref]

Piestun, R.

W. Cai and R. Piestun, “Patterning of silica microsphere monolayers with focused femtosecond laser pulses,” Appl. Phys. Lett. 88, 111112 (2006).
[Crossref]

Ponyavina, AN.

V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
[Crossref]

Prokofiev, A.V.

V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
[Crossref]

Ravaine, S.

P. Massé, S. Reculusa, K. Clays, and S. Ravaine, “Tailoring planar defects in three-dimensional colloidal crystals,” Chem. Phys. Lett. 422, 251 (2006).
[Crossref]

Reculusa, S.

P. Massé, S. Reculusa, K. Clays, and S. Ravaine, “Tailoring planar defects in three-dimensional colloidal crystals,” Chem. Phys. Lett. 422, 251 (2006).
[Crossref]

Reynolds, A.

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. Garcia-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 011422 (1999).
[Crossref]

S.V., Gaponenko

V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
[Crossref]

Samoilovich, S.M.

V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
[Crossref]

Sánchez-Dehesa, J.

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. Garcia-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 011422 (1999).
[Crossref]

Sato, T.

H.T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87, 7152 (2000).
[Crossref]

Schniedergers, M.

F. Jonsson, C.M.Sotomayor Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artificially inscribed defects in opal photonic crystals,” Microelectron. Eng. 48, 78 (2005).

Seekamp, J.

F. Jonsson, C.M.Sotomayor Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artificially inscribed defects in opal photonic crystals,” Microelectron. Eng. 48, 78 (2005).

Segawa, Y.

S. Yano, Y. Segawa, J.S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice ad three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

Silvanovich, N.I.

V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
[Crossref]

Soukoulis, CM.

Photonic Band Gap Materials, edited by CM. Soukoulis (Kluwer Academic Publishers, Dordrecht,1996).

Sturm, J.C.

A.Y. Vlasov, X.-Z. Bo, J.C. Sturm, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289 (2001).
[Crossref] [PubMed]

Tiedemann, A.

F. Jonsson, C.M.Sotomayor Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artificially inscribed defects in opal photonic crystals,” Microelectron. Eng. 48, 78 (2005).

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

Torres, C.M.Sotomayor

F. Jonsson, C.M.Sotomayor Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artificially inscribed defects in opal photonic crystals,” Microelectron. Eng. 48, 78 (2005).

Villeneuve, P.R.

S.G. Johnson, P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[Crossref]

Vlasov, A.Y.

A.Y. Vlasov, X.-Z. Bo, J.C. Sturm, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289 (2001).
[Crossref] [PubMed]

Vos, W.L.

J. Wijnhoven and W.L. Vos, “Preparation of Photonic Crystals made of air spheres in Titania,” Science 281, 802 (1998).
[Crossref]

Wijnhoven, J.

J. Wijnhoven and W.L. Vos, “Preparation of Photonic Crystals made of air spheres in Titania,” Science 281, 802 (1998).
[Crossref]

Winn, J.N.

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton University Press, Princeton, New Jersey,1995).

Xia, Y.

X. Jiang, T. Herricks, and Y. Xia, “Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization,” Adv. Mater. 15, 1205 (2003).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

Yamaguchi, S.

S. Yano, Y. Segawa, J.S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice ad three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

Yano, S.

S. Yano, Y. Segawa, J.S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice ad three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

Ye, J.

F. Jonsson, C.M.Sotomayor Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artificially inscribed defects in opal photonic crystals,” Microelectron. Eng. 48, 78 (2005).

Zentel, R.

F. Jonsson, C.M.Sotomayor Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artificially inscribed defects in opal photonic crystals,” Microelectron. Eng. 48, 78 (2005).

Adv. Mater (1)

C. López, “Materials Aspects of Photonic Crystals,” Adv. Mater 15, 1679 (2003).
[Crossref]

Adv. Mater. (1)

X. Jiang, T. Herricks, and Y. Xia, “Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization,” Adv. Mater. 15, 1205 (2003).
[Crossref]

Appl. Phys. Lett. (1)

W. Cai and R. Piestun, “Patterning of silica microsphere monolayers with focused femtosecond laser pulses,” Appl. Phys. Lett. 88, 111112 (2006).
[Crossref]

Chem. Phys. Lett. (1)

P. Massé, S. Reculusa, K. Clays, and S. Ravaine, “Tailoring planar defects in three-dimensional colloidal crystals,” Chem. Phys. Lett. 422, 251 (2006).
[Crossref]

J. Appl. Phys. (1)

H.T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87, 7152 (2000).
[Crossref]

J. Colloid Interface Sci. (1)

E. Mine, M. Hirose, D. Nagao, Y. Kobayashi, and M. Konno, “Synthesis of submicrometer-sized titania spherical particles with a sol-gel method and their application to colloidal photonic crystals,” J. Colloid Interface Sci. 291, 162 (2005).
[Crossref] [PubMed]

Microelectron. Eng. (1)

F. Jonsson, C.M.Sotomayor Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artificially inscribed defects in opal photonic crystals,” Microelectron. Eng. 48, 78 (2005).

Nature (2)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M.van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437 (2000).
[Crossref] [PubMed]

A.Y. Vlasov, X.-Z. Bo, J.C. Sturm, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289 (2001).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (4)

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic band gaps,” Phys. Rev. B 53, 7134 (1996).
[Crossref]

S.G. Johnson, P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[Crossref]

S. Yano, Y. Segawa, J.S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice ad three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. Garcia-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 011422 (1999).
[Crossref]

Phys. Rev. E (1)

V.N. Bogomolov, Gaponenko S.V., I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, AN. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619 (1997).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

S. John, “Strong Localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

Science (1)

J. Wijnhoven and W.L. Vos, “Preparation of Photonic Crystals made of air spheres in Titania,” Science 281, 802 (1998).
[Crossref]

Other (2)

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton University Press, Princeton, New Jersey,1995).

Photonic Band Gap Materials, edited by CM. Soukoulis (Kluwer Academic Publishers, Dordrecht,1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Photonic band structure of a monolayer of dielectric spheres lying on the (1 1 1) plane of a FCC structure. The parity of the modes with respect to the plane of study is indicated by a blue continuous line and a red dashed line for the even and odd modes, respectively. The light cone (dark blue shaded area) is the continuous region were light may couple to the bulk background.
Fig. 2. (a)
Fig. 2. (a) Primitive cell of the hexagonal superlattice. It is composed of four regular hexagonal cells and counts a total number of three spheres per supercell. (b) Photonic band structure in the even modes of a hexagonal superlattice monolayer of dielectric spheres with refractive index 2.9. The guided modes lying below the light cone (dark blue shaded area) exhibit a PBG (light blue shaded area) centered on a reduced frequency ωa/2πc=0.214 and with a gap to mid-gap ratio of 12.4 %, being significant enough for preventing light in a quite large frequency range from propagating through the monolayer.
Fig. 3.
Fig. 3. Gap map of a hexagonal superlattice monolayer of dielectric spheres in the even modes. The PBGs (dark blue shaded area) that exist below the light cone are widened and pushed down to lower frequencies as the dielectric constant ε=n 2 of the spheres is increased
Fig. 4.
Fig. 4. Photonic band structure of the even modes of a linear waveguide directed along the ΓK′ direction. Modes lying within the light cone (dark blue shaded area) or the slab bands (light blue shaded area) may couple to the bulk background or escape laterally in the 2D PhC, respectively. Two guided modes are found lying within the PBG.
Fig. 5.
Fig. 5. Horizontal (top) and vertical (bottom) cross-sections of the vertical component of the magnetic field of the lower (a) and higher (b) non-degenerate guided modes at the K′-point. The waveguide is made by inserting a row of dielectric spheres along the ΓK′ direction. The magnetic field (blue shaded at its minima, red shaded at its maxima and green shaded at its node) is well-confined to the waveguide.

Metrics